Synthesis
DOI: 10.1055/a-2338-4243
paper

Photoinduced Aryl Ketone-Catalyzed Phenylation of C(sp3)–H Bonds Attached to the Heteroatom of Ethers and N-Boc-Amines via Concerted Homolytic Aromatic Substitution

Masaya Azami
a   Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan
,
Michinori Sumimoto
b   Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
,
Reika Nakamura
c   Department of Chemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan
,
Toshihiro Murafuji
a   Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan
,
Shin Kamijo
a   Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan
› Author Affiliations
This research was supported by the JSPS KAKENHI Grant Number JP22K05096 to S.K.


Abstract

A single-step phenylation at the non-acidic C(sp3)–H bond attached to the heteroatom of ethers and N-Boc-amines has been achieved using photoexcited 4-benzoylpyridine as a hydrogen atom transfer (HAT) catalyst. The design of electron-deficient (trifluoromethylsulfonyl)benzene derivatives, as a phenyl precursor, was critical to realizing the present transformation. Moreover, the DFT calculations indicated that the present transformation proceeds via a concerted homolytic aromatic substitution rather than via a stepwise one involving the formation of a cyclohexadienyl radical intermediate.

Supporting Information



Publication History

Received: 01 May 2024

Accepted after revision: 04 June 2024

Accepted Manuscript online:
04 June 2024

Article published online:
02 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For representative reviews on homolytic aromatic substitution, see:
    • 1a Fossey J, Lefort D, Sorba J. Aromatic Substitution in Free Radicals in Organic Chemistry . Wiley; Chichester: 1995: 166-180
    • 1b Bowman WR, Storey JM. D. Chem. Soc. Rev. 2007; 36: 1803
    • 1c Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 1d Gurry M, Aldabbagh F. Org. Biomol. Chem. 2016; 14: 3849
    • 2a DeTar DF, Long RA. J. J. Am. Chem. Soc. 1958; 80: 4742
    • 2b Eliel EL, Meyerson S, Welvart Z, Wilen SH. J. Am. Chem. Soc. 1960; 82: 2936
    • 2c Eliel EL, Eberhardt M, Simamura O, Meyerson S. Tetrahedron Lett. 1962; 3: 749
    • 2d Hay DH. Bull. Soc. Chem. Fr. 1968; 4: 1591
    • 3a Curran DP, Keller AI. J. Am. Chem. Soc. 2006; 128: 13706
    • 3b Tang Z, Mo K, Ma X, Huang J, Zhao D. Angew. Chem. Int. Ed. 2022; 61: e202208089
    • 4a Russell GA, Chen P, Kim BH, Rajaratnam R. J. Am. Chem. Soc. 1997; 119: 8795
    • 4b Wang C, Russell GA, Trahanovsky WS. J. Org. Chem. 1998; 63: 9956
    • 4c Tang W.-K, Tang F, Xu J, Zhang Q, Dai J.-J, Feng Y.-S, Xu H.-J. Chem. Commun. 2020; 56: 1497

      For selected examples of the cyclohexadienyl radical detection, see:
    • 5a Wong PC, Marriott PR, Griller D, Nonhebel DC, Perkins MJ. J. Am. Chem. Soc. 1981; 103: 7761
    • 5b Scaiano JC, Stewart LC. J. Am. Chem. Soc. 1983; 105: 3609
    • 5c Dick PF, Glover SA, Goosen A, McCleland CW. J. Chem. Soc., Perkin Trans. 1 1987; 1243
    • 6a Fossey J, Lefort D, Sorba J. Aromatic Substitution in Free Radicals in Organic Chemistry . Wiley; Chichester: 1995: 168
    • 6b Citterio A, Minisci F, Franchi V. J. Org. Chem. 1980; 45: 4752
    • 6c Minisci F, Vismara E, Fontana F, Morini G, Serravalle M, Giordano C. J. Org. Chem. 1986; 51: 4411
    • 7a Tiecco M. Acc. Chem. Res. 1980; 13: 51
    • 7b Pudlo M, Allart-Simon I, Tinant B, Gérard S, Sapi J. Chem. Commun. 2012; 48: 2442
    • 7c Ujjainwalla F, de Mata ML. E.N, Pennell AM. K, Escolano C, Motherwell WB, Vázquez S. Tetrahedron 2015; 71: 6701

      For reviews on the homolytic aromatic substitution of heteroaromatics known as the Minisci reaction, see:
    • 8a Minisci F. Synthesis 1973; 1
    • 8b Minisci F, Vismara E, Fontana F. Heterocycles 1989; 28: 489
    • 8c Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
    • 9a Itou T, Yoshimi Y, Morita T, Tokunaga Y, Hatanaka M. Tetrahedron 2009; 65: 263
    • 9b McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
    • 9c Pirnot MT, Rankic DA, Martin DB. C, MacMillan DW. C. Science 2013; 339: 1593
    • 9d Qvortrup K, Rankic DA, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 626
    • 9e Kobayashi F, Fujita M, Ide T, Ito Y, Yamashita K, Egami H, Hamashima Y. ACS Catal. 2021; 11: 82

      For recent examples of C(sp3)–H functionalizations using a photoexcited aryl ketone from our group, see:
    • 10a Kamijo S, Takao G, Kamijo K, Hirota M, Tao K, Murafuji T. Angew. Chem. Int. Ed. 2016; 55: 9695
    • 10b Kamijo S, Kamijo K, Maruoka K, Murafuji T. Org. Lett. 2016; 18: 6516
    • 10c Kamijo S, Azami M, Kamijo K, Umeno H, Ishii R, Murafuji T. Adv. Synth. Catal. 2024; 366: 1375

      For representative reports on C(sp3)–H functionalizations using a photoexcited aryl ketone from other groups, see:
    • 11a Xia J.-B, Zhu C, Chen C. J. Am. Chem. Soc. 2013; 135: 17494
    • 11b Kee CWs, Chin KF, Wong MW, Tan C.-H. Chem. Commun. 2014; 50: 8211
    • 11c Cantillo D, de Frutos O, Rincón JA, Mateos C, Kappe CO. J. Org. Chem. 2014; 79: 8486
    • 11d Nagatomo M, Yoshioka S, Inoue M. Chem. Asian J. 2015; 10: 120
    • 11e Ota E, Mikame Y, Hirai G, Nishiyama S, Sodeoka M. Synlett 2016; 27: 1128
    • 11f Shen Y, Gu Y, Martin R. J. Am. Chem. Soc. 2018; 140: 12200
    • 11g Dewanji A, Krach PE, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 3566
    • 11h Si X, Zhang L, Hashimi AS. K. Org. Lett. 2019; 21: 6329

      For recent examples of C(sp3)–H arylations using a photoexcited aryl ketone from our group, see:
    • 12a Kamijo S, Kamijo K, Murafuji T. J. Org. Chem. 2017; 82: 2664
    • 12b Kamijo S, Kamijo K, Murafuji T. Synthesis 2019; 51: 3859
    • 12c Azami M, Murafuji T, Kamijo S. Synthesis 2022; 54: 4576

      For closely related reports on C(sp3)–H arylations through homolytic aromatic substitution from other groups, see:
    • 13a Hoshikawa T, Inoue M. Chem. Sci. 2013; 4: 3118
    • 13b Lipp A, Lahm G, Opatz T. J. Org. Chem. 2016; 81: 4890
    • 13c Ueno R, Ikeda Y, Shirakawa E. Eur. J. Org. Chem. 2017; 4188
    • 13d Ikeda Y, Ueno R, Akai Y, Shirakawa E. Chem. Commun. 2018; 54: 10471
    • 13e Aoki K, Yonekura K, Ikeda Y, Ueno R, Shirakawa E. Adv. Synth. Catal. 2020; 362: 2200
    • 13f Yonekura K, Aoki K, Nishida T, Ikeda Y, Oyama R, Hatano S, Abe M, Shirakawa E. Chem. Eur. J. 2023; 29: e202302658
    • 13g Yonekura K, Murooka M, Aoki K, Shirakawa E. Org. Lett. 2023; 25: 6682

      For other recent examples of C(sp3)–H phenylations, see:
    • 14a Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
    • 14b Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
    • 14c Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
    • 14d Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 14e Twilton J, Christensen M, DiRocco DA, Ruck RT, Davies IW, MavMillan DW. C. Angew. Chem. Int. Ed. 2018; 57: 5369
    • 14f Ackerman LK. G, Alvarado JI. M, Doyle AG. J. Am. Chem. Soc. 2018; 140: 14059
    • 14g Kariofillis SK, Jiang S, Żurański AM, Gandhi SS, Alvarado JI. M, Doyle AG. J. Am. Chem. Soc. 2022; 144: 1045
    • 14h Wang Q.-L, Sun Z, Huang H, Mao G, Deng G.-J. Green Chem. 2022; 24: 3293
    • 14i Rand AW, Chen M, Montgomery J. Chem. Sci. 2022; 13: 10566
    • 14j Uchikura T, Tsubono K, Hara Y, Akiyama T. J. Org. Chem. 2022; 87: 15499
    • 14k Huang L, Szewczyk M, Kancherla R, Maity B, Zhu C, Cavallo L, Rueping M. Nat. Commun. 2023; 14: 548
    • 14l Zou L, Xiang S, Sun R, Lu Q. Nat. Commun. 2023; 14: 7992
  • 15 Chu X.-Q, Ge D, Cui Y.-Y, Shen Z.-L, Li C.-J. Chem. Rev. 2021; 121: 12548
  • 16 The reaction using other aryl ketones as a hydrogen atom transfer (HAT) agent, including 2-chloroanthraquinone, xanthone, and thioxanthone, gave the desired product 3a in lower yields, see: Supporting Information for details.
  • 17 The reaction between THF (1a) and the phenyl precursor 2a at rt for 22 h, otherwise identical conditions as in entry 3 of Table 2, gave the expected product 3a in 31% yield along with the recovery of 2a in 9% yield, as judged by the NMR analysis of the crude mixture. The other solvents such as acetone, EtOAc, CH3CN, benzene, and 1,2-dichloroethane were also applicable with slightly lower product yields.
  • 18 The addition of H2O apparently improved light transmission by dissolving the derived salt on the wall of the test tube during the reaction.
  • 19 The dissociation energies of the selected C–H bonds: (CH3)3C–H (95.7 kcal/mol), the C–H bond next to the oxygen atom of THF (92.1 kcal/mol), and the C–H bond next to the nitrogen atom of pyrrolidine (90.1 kcal/mol), see: Lo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC; Boca Raton/FL: 2007
  • 20 The chemoselectivity and the stereoselectivity of the present transformation could be observed by using N-Boc-morpholine and N-Boc-l-proline, respectively, although the yields of the corresponding phenylated products were low. The benzyloxycarbonyl (Cbz) group was a possible option for the protecting amine functionality, while the 2,2,2-trichloroethoxycarbonyl (Troc) group was not, see: Supporting Information for details.
  • 21 The phenyl precursor without additional EWG, (trifluoromethylsulfonyl)benzene, did not give the expected product, 2-phenyltetrahydrofuran, under the standard conditions for 24 h, and recovery of the phenyl precursor was observed.
  • 22 The DFT calculations showed that the energy barrier leading to the expected product 3o′ is higher than to its isomer 3o, see: Supporting Information for details.
  • 23 To obtain the TEMPO-adduct of THF 4, the reaction was carried out under slightly modified conditions with a stoichiometric amount of K2CO3 and without addition of H2O at rt, see: entries 3 and 9 of Table 2 for comparison.
  • 24 The maximum yield of the TEMPO-adduct of THF 4 is 50%, considering the amount of TEMPO applied, see: reference 10c for details.
    • 25a Campbell MW, Yuan M, Polites VC, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2021; 143: 3901
    • 25b Sanjosé-Orduna J, Silva RC, Raymenants F, Reus B, Thaens J, de Oliveira KT, Noël T. Chem. Sci. 2022; 13: 12527
  • 26 The kinetic isotope effect (KIE) was measured by independent treatment of THF (1a) and its fully deuterated analogue 1a-d with the phenyl precursor 2a under the optimized conditions. Its value was calculated to be 1.5.
  • 27 A related concerted nucleophilic aromatic substitution has been reported recently, see: Rohrbach S, Smith AJ, Pang JH, Poole DL, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: 16368
  • 28 A radical chain mechanism, hydrogen atom abstraction from THF (1a) caused by in situ generated trifluoromethylsulfinyl radical (G) to derive THF radical (F THF), does not seem to work in the present case, probably due to rapid reduction of G by the ketyl radical leading to the sulfinic acid. By conducting the light ON/OFF experiment, we confirmed the necessity of photoirradiation to promote the reaction, see: Supporting Information, for details and also see: Wang Y.-T, Shih Y.-L, Wu Y.-K, Ryu I. Adv. Synth. Catal. 2022; 364: 1039
  • 29 He D, Wang B, Duan K, Zhou Y, Li M, Jiang H, Wu W. Org. Lett. 2022; 24: 1292
  • 30 Chen Y, Lu P, Wang Y. Org. Lett. 2019; 21: 2130
  • 31 Wang Z, Zhao X, Wang H, Li X, Xu Z, Ramadoss V, Tian L, Wang Y. Org. Lett. 2022; 24: 7476
  • 32 Ueno R, Shirakawa E. Org. Biomol. Chem. 2014; 12: 7469