CC BY-NC-ND 4.0 · Synthesis
DOI: 10.1055/a-2344-5677
short review

Latest Developments on Palladium- and Nickel-Catalyzed Cross-Couplings Using Aryl Chlorides: Suzuki–Miyaura and Buchwald–Hartwig Reactions

Abhijit Sen
,
We are grateful for the financial support provided by the Japan Society for the Promotion of Science (JSPS), through the following grants: Grant-in-Aid for Scientific Research (B) 21H01979, Grant-in-Aid for Transformative Research Areas (A) JP21A204, and the Digitalization-driven Transformative Organic Synthesis (Digi-TOS). We also appreciate support from RIKEN.


Abstract

Palladium- and nickel-catalyzed cross-couplings are powerful methods for constructing C–C and C–N bonds, particularly through Suzuki–Miyaura and Buchwald–Hartwig reactions. Although aryl iodides, bromides, and triflates are the most commonly used substrates, aryl chlorides are less frequently utilized due to their lower reactivity. However, they are appealing because they are readily available and inexpensive. This short review highlights recent developments on the Suzuki–Miyaura and Buchwald–Hartwig cross-couplings of aryl chlorides, using both homogeneous and heterogeneous catalysis with palladium and nickel.

1 Introduction

2 Suzuki–Miyaura Cross-Couplings

2.1 Homogeneous Palladium Catalysis

2.2 Heterogeneous Palladium Catalysis

2.3 Homogeneous Nickel Catalysis

2.4 Heterogeneous Nickel Catalysis

3 Buchwald–Hartwig Amination Reactions

3.1 Homogeneous Palladium Catalysis

3.2 Heterogeneous Palladium Catalysis

3.3 Homogeneous Nickel Catalysis

3.4 Heterogeneous Nickel Catalysis

4 Conclusion



Publication History

Received: 30 April 2024

Accepted after revision: 23 May 2024

Accepted Manuscript online:
13 June 2024

Article published online:
08 July 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
    • 1b Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
    • 1c Onoabedje EA, Okoro UC. Synth. Commun. 2019; 49: 2117
    • 1d Bhaskaran S, Padusha MS. A, Sajith AM. ChemistrySelect 2020; 5: 9005
    • 1e Farhang M, Akbarzadeh AR, Rabbani M, Ghadiri AM. Polyhedron 2022; 227: 116124
    • 1f Bellina F, Carpita A, Rossi R. Synthesis 2004; 2419
    • 1g Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1h Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633
    • 1i Zhang Z, Yamada YM. A. Chem. Eur. J. 2024; 30: e202304335
    • 1j Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
    • 2a Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 2b Emadi R, Nekoo AB, Molaverdi F, Khorsandi Z, Sheibani R, Sadeghi-Aliabadi H. RSC Adv. 2023; 13: 18715
    • 2c Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
    • 2d Taylor OR, Saucedo PJ, Bahamonde A. J. Org. Chem. 2024; 89 in press; DOI: DOI: 10.1021/acs.joc.3c02353.
    • 2e Ghosh I, Shlapakov N, Karl TA, Düker J, Nikitin M, Burykina JV, Ananikov VP, König B. Nature 2023; 619: 87
    • 2f Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 2g Lu C.-J, Xu Q, Feng J, Liu R.-R. Angew. Chem. Int. Ed. 2023; 62: e202216863
    • 2h Sherwood J, Clark JH, Fairlamb IJ. S, Slattery JM. Green Chem. 2019; 21: 2164
    • 2i Ingoglia BT, Wagen CC, Buchwald SL. Tetrahedron 2019; 75: 4199
    • 2j Dorel R, Grugel CP, Haydl AM. Angew. Chem. Int. Ed. 2019; 58: 17118
    • 2k Heravi MM, Kheilkordi Z, Zadsirjan V, Heydari M, Malmir M. J. Organomet. Chem. 2018; 861: 17
    • 2l Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
    • 2m Lewis AK. de K, Caddick S, Cloke FG. N, Billingham NC, Hitchcock PB, Leonard J. J. Am. Chem. Soc. 2003; 125: 10066
    • 2n Chrisman CH, Kudisch M, Puffer KO, Stewart TK, Lamb YM. L, Lim C.-H, Escobar R, Thordarson P, Johannes JW, Miyake GM. J. Am. Chem. Soc. 2023; 145: 12293
    • 2o Song G, Dong J, Song J, Gang LiG, Xue D. Synthesis 2024; 56 in press; DOI: DOI: 10.1055/a-2307-8257.
  • 3 Reetz MT, Westermann E. Angew. Chem. Int. Ed. 2000; 39: 165
  • 4 Feng Y, Luo H, Yu F, Liao Q, Lin L. Green Chem. 2023; 25: 2361
  • 5 Anjali BA, Suresh CH. ACS Omega 2017; 2: 4196
  • 6 Kolychev EL, Asachenko AF, Dzhevakov PB, Bush AA, Shuntikov VV, Khrustalev VN, Nechaev MS. Dalton Trans. 2013; 42: 6859
  • 7 Hruszkewycz D, Balcells D, Guard LM, Hazari N, Tilset M. J. Am. Chem. Soc. 2014; 136: 7300
  • 8 Ayogu JI, Ezema BE, Ezema CG. Asian J. Chem. 2015; 27: 4467
  • 9 Li H, Zhong Y.-L, Chen C.-y. Ferraro A. E., Wang D. 2015; 17: 3616
  • 10 Shahnaz N, Puzari A, Paul B, Das P. Catal. Commun. 2016; 86: 55
  • 11 Zhang N, Wang C, Zou G, Tang J. J. Organomet. Chem. 2017; 842: 54
  • 12 Yan M.-Q, Yuan J, Lan F, Zeng S.-H, Gao M.-Y, Liu S.-H, Chen J, Yu G.-A. Org. Biomol. Chem. 2017; 15: 3924
  • 13 Xu L.-Y, Liu C.-Y, Liu S.-Y, Ren Z.-G, Young DJ, Lang J.-P. Tetrahedron 2017; 73: 3125
  • 14 Ramakrisna V, Rani MJ, Reddy ND. Eur. J. Org. Chem. 2017; 7238
  • 15 Althagafi I, Shaaban MR, Al-dawood AY, Farag AM. Chem. Cent. J. 2017; 11: 88
  • 16 Ji H, Wu L.-Y, Cai J.-H, Li G.-R, Gan N.-N, Wang Z.-H. RSC. Adv. 2018; 8: 13643
  • 17 Duan X, Li P, Zhu G, Fu C, Chen Q, Huang X, Ma S. Org. Chem. Front. 2018; 5: 3319
  • 18 Liu G, Han F, Liu C, Wu H, Zeng Y, Zhu R, Yu X, Rao S, Huang G, Wang J. Organometallics 2019; 38: 1459
  • 19 Schmidt AF, Kurokhtina AA, Larina EV, Vidyaeva EV, Lagoda NA. J. Organomet. Chem. 2020; 929: 121571
  • 20 Zhang Y, Zhang R, Ni C, Zhang X, Li Y, Lu Q, Zhao Y, Han F, Zeng Y, Liu G. Tetrahedron Lett. 2020; 61: 151541
  • 21 Choy PY, Yuen OY, Leung MP, Chow WK, Kwong FY. Eur. J. Org. Chem. 2020; 2846
  • 22 Tran RQ, Dinh LP, Jacoby SA, Harris NW, Swann WA, Williamson SN, Semsey RY, Yet L. RSC Adv. 2021; 11: 28347
  • 23 Niwa T, Uetake Y, Isoda M, Takimoto T, Nakaoka M, Hashizume D, Sakurai H, Hosoya T. Nat. Catal. 2021; 4: 1080
  • 24 Malapit CA, Bour JR, Brigham CB, Sanford MS. Nature 2018; 563: 100
  • 25 Chen L, Sanchez DR, Zhang B, Carrow BP. J. Am. Chem. Soc. 2017; 139: 12418
  • 26 Palladino C, Fanatoni T, Ferrazzano L, Tolomelli A, Carbi W. ACS Sustainable Chem. Eng. 2023; 11: 15994
  • 27 Garnes-Portolés F, Sanz-Navarro S, Ballesteros-Soberanas J, Collado-Peréz A, Sánchez-Quesada J, Espinós-Ferri E, Leyva-Peréz A. J. Org. Chem. 2023; 88: 5962
  • 28 Orecchia P, Petkova DS, Goetz R, Rominger F, Hashmi AS. K, Schaub T. Green Chem. 2021; 23: 8169
  • 30 Dolšak A, Mrgole K, Sova M. Catalysts 2021; 11: 439
  • 31 Andrews MJ, Brunen S, McIntosh RD, Mansell SM. Catalysts 2023; 13: 303
  • 32 Wang T, Wei T.-R, Huang S.-J, Lai Y.-T, Lee D.-S, Lu T.-J. Catalysts 2021; 11: 817
  • 33 Samarasimhareddy M, Prabhu G, Vishwanatha TM, Sureshbabau VV. Synthesis 2013; 45: 1201
  • 34 Isfahani AL, Mohammadpoor-Baltork I, Mirkhani V, Khoropour AR, Moghadam M, Tangestaninejad S, Kia R. Adv. Synth. Catal. 2013; 355: 957
  • 35 Metin Ö, Ho SF, Alp C, Can H, Mankin M, Gültekin MS, Chi M, Sun S. Nano Res. 2013; 6: 10
  • 36 Firouzabadi H, Iranpoor N, Ghaderi A, Gholinejad M, Rahimi S, Jokar S. RSC Adv. 2014; 4: 27674
  • 37 Iwai T, Konishi S, Miyazaki T, Kawamorita S, Yokokawa N, Ohmiya H, Sawamura M. ACS Catal. 2015; 5: 7254
  • 38 Handa S, Wang Y, Gallou F, Lipshutz BH. Science 2015; 349: 6252
  • 39 Martínez-Olid F, Andrés R, de Jesús E, Flores JC, Gómez-Sal P, Heuzé K, Vellutini L. Dalton Trans. 2016; 45: 11633
  • 40 Li R, Li R, Wang C, Gao L, Chen Q. Dalton Trans. 2016; 45: 539
  • 41 Mpungose PP, Sehloko NI, Maguire EM, Friedrich HB. New J. Chem. 2017; 41: 13560
  • 42 Yamada T, Masuda H, Park K, Tachikawa T, Ito N, Ichikawa T, Yoshimura M, Takagi Y, Sawama Y, Ohya Y, Sajiki H. Catalysts 2019; 9: 461
    • 43a Yamada M, Shio Y, Akiyama T, Honma T, Ohki Y, Takahashi N, Murai K, Arisawa M. Green Chem. 2019; 21: 4541
    • 43b Sako M, Arisawa M. Synthesis 2021; 53: 3513
  • 44 Motokura K, Fukuda T, Manaka Y. ChemistrySelect 2019; 4: 10501
  • 45 Liu B, Xu T, Li C, Bai J. New J. Chem. 2020; 44: 3791
  • 46 Zhang Q, Mao Z, Wang K, Phan NT. S, Zhang F. Green Chem. 2020; 22: 3239
  • 47 Labattut A, Abdellah I, Buendia J, Fayssal SA, Adhel E, Dragoe D, Martini C, Schulz E, Huc V. Catalysts 2020; 10: 1081
    • 48a Ohno A, Sato T, Mase T, Uozumi Y, Yamada YM. A. Adv. Synth. Catal. 2020; 362: 4687
    • 48b Sen A, Sato T, Ohno A, Baek H, Muranaka A, Yamada YM. A. JACS Au 2022; 1: 2080
    • 48c Sen A, Dhital RN, Sato T, Ohno A, Yamada YM. A. ACS Catal. 2020; 10: 14410
    • 48d Hu H, Ohno A, Sato T, Mase T, Uozumi Y, Yamada YM. A. Org. Process Res. Dev. 2019; 23: 493
    • 48e Hudson R, Zhang HR, LoTemplio A, Bennedetto G, Hamasaka G, Yamada YM. A, Katz JL, Uozumi Y. Chem. Commun. 2018; 54: 2878
    • 48f Yamada YM. A, Yoshida H, Ohno A, Sato T, Mase T, Uozumi Y. Heterocycles 2017; 95: 715
    • 48g Yamada YM. A, Sarkar SM, Uozumi Y. J. Am. Chem. Soc. 2012; 134: 9285
    • 48h Yamada YM. A, Sarkar SM, Uozumi Y. J. Am. Chem. Soc. 2012; 134: 3190
    • 49a Rizzo G, Albano G, Sibillano T, Giannini C, Musio R, Omentto FG, Farinola GM. Eur. J. Org. Chem. 2022; e202101567
    • 49b Rizzo G, Albano M, Lo Presti M, Milella A, Omenetto G, Farinola GM. Eur. J. Org. Chem. 2020; 6992
  • 50 Wang C.-A, Zhao W, Li Y.-W, Han Y.-F, Zhang J.-P, Li Q, Nie K, Chang J.-G, Liu F.-S. Polym. Chem. 2022; 13: 1547
  • 51 Wang S, Chen J, Zhang F, Zhao Y, Wu X, Chen R. Chem. Commun. 2023; 59: 6568
  • 52 Lizuka K, Maegawa Y, Shimoyama Y, Sakamoto K, Kayakiri N, Goto Y, Naganawa Y, Tanaka S, Yoshida M, Inagaki S, Nakajima Y. Chem. Eur. J. 2023; e202303159
  • 53 Chen F, Zheng L, Li C, Wang B, Wu Q, Dai Z, Wang S, Sun Q, Meng X, Xiao F.-S. Small 2023; 19: 2301875
  • 54 Kim HS, Lee H.-Y, Joung S. Asian J. Org. Chem. 2024; e202400011
  • 55 Ramgren SD, Hie L, Ye Y, Garg NK. Org. Lett. 2013; 15: 3950
  • 56 Lei X, Obregon KA, Alla J. Appl. Organomet. Chem. 2013; 27: 419
  • 57 Chen X, Ke H, Zou G. ACS Catal. 2014; 4: 379
  • 58 Cooper AK, Greaves ME, Donohoe W, Burton PM, Ronson TO, Kennedy AR, Nelson DJ. Chem. Sci. 2021; 12: 14074
  • 59 Islam K, Arora V, Vikas, Nag B, Kumar A. ChemCatChem 2022; 14: e202200440
  • 60 Borowski JE, Newman-Stonebraker SH, Doyle AG. ACS Catal. 2023; 13: 7966
  • 61 Handa S, Slack ED, Lipshutz BH. Angew. Chem. Int. Ed. 2015; 54: 11994
  • 62 Hajipour AR, Abolfathi P. New J. Chem. 2017; 41: 2386
  • 63 Liao Y, Yang W, Wei T, Cai M. Synth. Commun. 2019; 49: 1134
  • 64 Dhital RN, Sen A, Sato T, Hu H, Ishi R, Hashizume D, Takaya H, Uozumi Y, Yamada YM. A. Org. Lett. 2020; 22: 4797
  • 65 Dong Y, Jv J.-J, Li Y, Li W.-H, Chen Y.-Q, Sun Q, Ma J.-P, Dong Y.-B. RSC Adv. 2019; 9: 20266
    • 66a Guram AS, Rennels RA, Buchwald SL. Angew. Chem. Int. Ed. 1995; 34: 1348
    • 66b Louie J, Hartwig JF. Tetrahedron Lett. 1995; 36: 3609
    • 67a Bruno NC, Tudge MT, Buchwald SL. Chem. Sci. 2013; 4: 916
    • 67b McCann SD, Reichert EC, Arrechea PL, Buchwald SL. J. Am. Chem. Soc. 2020; 142: 15027
    • 67c Reichert E, Feng K, Sather AC, Buchwald SL. J. Am. Chem. Soc. 2023; 145: 3323
  • 68 Kiu Y, Yuan J, Wang Z.-F, Zeng S.-H, Gao M.-Y, Ruan M.-L, Chen J, Yu G.-A. Org. Biomol. Chem. 2017; 15: 5805
  • 69 Wang H, Wang B, Li B. J. Org. Chem. 2017; 82: 9560
    • 70a Wang JY, Choi K, Zuend SJ, Borate K, Shinde H, Goetz R, Hartwig JF. Angew. Chem. Int. Ed. 2021; 60: 399
    • 70b Green RA, Hartwig JF. Org. Lett. 2014; 16: 4388
    • 70c Brusoe AT, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 8460
  • 71 Zheng D.-Z, Xiong H.-G, Song A.-X, Yao H.-G, Xu C. Org. Biomol. Chem. 2022; 20: 2096
  • 72 Gevorgyan A, Hopmann KH, Bayer A. Organometallics 2022; 41: 1777
  • 73 Ouyang J.-S, Zhang X, Pan B, Zou H, Chan AS. C, Qiu L. Org. Lett. 2023; 25: 7491
  • 74 Jacoby SA, Harris NW, Wiemann A, Glenn CD, Kantzler AR, Dinh LP, Yet L. ChemistrySelect 2024; 9: e202305085
  • 75 Merschel A, Glodde T, Neumann B, Stammler H.-G, Ghadwal RS. Angew. Chem. Int. Ed. 2021; 60: 2969
  • 76 Sobhani S, Zarei H, Sansano M. Sci. Rep. 2021; 11: 17025
  • 77 Iyer KS, Kavthe RD, Lammert RM, Yirak JR, Lipshutz BH. JACS Au 2024; 4: 680
    • 78a Wolfe JP, Buchwald SL. J. Am. Chem. Soc. 1997; 119: 6054
    • 78b Park NH, Teverovskiy G, Buchwald SL. Org. Lett. 2014; 16: 220
  • 79 Borzenko A, Rotta-Loria NL, MacQueen PM, Lavoie CM, McDonald R, Stradiotto M. Angew. Chem. Int. Ed. 2015; 54: 3773
    • 80a Ge S, Green RA, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 1617
    • 80b Green RA, Hartwig JF. Angew. Chem. Int. Ed. 2015; 54: 3768
  • 81 Magano J, Monfette S. ACS Catal. 2015; 5: 3120
  • 82 Shields JD, Gray EE, Doyle AG. Org. Lett. 2015; 17: 2166
    • 83a Lavoie CM, McDonald R, Johnson ER, Stradiotto M. Adv. Synth. Catal. 2017; 359: 2972
    • 83b Lavoie CM, MacQueen PM, Rotta-Loria NL, Sawatzky RS, Borzenko A, Chisholm AJ, Hargreaves BK. V, McDonald R, Ferguson MJ, Stradiotto M. Nat. Commun. 2016; 7: 11073
    • 83c Gatien AV, Lavoie CM, Bennett RN, Ferguson MJ, McDonald R, Johnson ER, Speed AW. H, Stradiotto M. ACS Catal. 2018; 8: 5328
    • 83d Martinek N, Morrison KM, Field JM, Fisher SA, Stradiotto M. Chem. Eur. J. 2023; e202203394
    • 83e Clark JS. K, Ferguson MJ, McDonald R, Stradiotto M. Angew. Chem. Int. Ed. 2019; 58: 6391
    • 83f McGuire RT, Paffile JF. J, Zhou Y, Stradiotto M. ACS Catal. 2019; 9: 9292
    • 83g Tassone JP, England EV, MacQueen PM, Ferguson MJ, Stradiotto M. Angew. Chem. Int. Ed. 2019; 58: 2485
  • 84 Li C, Kawamata Y, Nakamura H, Vantourout JC, Liu Z, Hou Q, Bao D, Starr JT, Chen J, Yan M, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 13088
  • 85 Tran VT, Li Z.-Q, Apolinar O, Derosa J, Joannou MV, Wisniewski SR, Eastgate MD, Engle KM. Angew. Chem. Int. Ed. 2020; 59: 7409
  • 86 Schrauzer GN, Thyret H. Z. Naturforsch. B 1962; 17: 73
  • 87 Nattmann L, Cornella J. Organometallics 2020; 39: 3295
  • 88 Ebi T, Sen A, Dhital RN, Yamada YM. A, Kaneko H. ACS Omega 2021; 6: 27578
  • 89 Wang Z.-C, Xie P.-P, Xu Y, Hong X, Shi S.-L. Angew. Chem. Int. Ed. 2021; 60: 16077
  • 90 Villatoro RS, Belfield JR, Arman HD, Hernandez LW, Simmons EM, Garlets ZJ, Wisniewski SR, Coombs JR, Frantz DE. Organometallics 2023; 42: 3164
  • 91 Khazipov OV, Pystachenko AS, Chernyshev VM, Ananikov VP. ChemCatChem 2023; 15: e20230046
    • 92a Song G, Nong D.-Z, Li Q, Yan Y, Li G, Fan J, Zhang W, Cao R, Wang C, Xiao J, Xue D. ACS Catal. 2022; 12: 15590
    • 92b Song G, Nong D.-Z, Li J.-S, Li G, Zhang W, Cao R, Wang C, Xiao J, Xue D. J. Org. Chem. 2022; 87: 10285
    • 92c Li F, Xiong W, Song G, Yan Y, Li G, Wang C, Xiao J, Xue D. Org. Lett. 2023; 25: 3287
    • 92d Song G, Song J, Li Q, Nong D.-Z, Dong J, Li G, Fan J, Wang C, Xiao J, Xue D. Angew. Chem. Int. Ed. 2024; 63: e202314355
  • 93 Corcoran EB, Pirnot MT, Lin S, Dreher SD, DiRocco DA, Davis IW, Buchwald SL, MacMillan DW. C. Science 2016; 353: 279
  • 94 Gisbertz S, Reischauer S, Pieber B. Nat. Catal. 2020; 3: 611
  • 95 Park BY, Pirnot MT, Buchwald SL. J. Org. Chem. 2020; 85: 3234
  • 96 Yasuran Y, Xing J, Lin Q, Wu G, Peng W.-C, Wu Y, Su T, Yang L, Zhang L, Li Q, Wang H, Li Z.-T, Zhang D.-W. Small 2023; 19: 2303069
  • 97 Iwai T, Harada T, Shimada H, Asano K, Sawamura M. ACS Catal. 2017; 7: 1681
    • 98a Cheng Y, Li Y.-X, Liu C.-H, Zhu Y.-Y, Lin W. Angew. Chem. Int. Ed. 2023; 62: e202310470
    • 98b Jati A, Dey K, Nurhuda M, Addicoat MA, Banerjee R, Maji B. J. Am. Chem. Soc. 2022; 144: 7822
  • 99 Sen A, Bukhanko V, Baek H, Ohno A, Muranaka A, Yamada YM. A. ACS Catal. 2023; 13: 12665