Synthesis
DOI: 10.1055/a-2348-5631
paper
Recent Advancements in the Chemistry of Diazo Compounds

Synthesis and Reactivity of α-Diazo-β-keto Sulfonamides

a   School of Chemistry, Analytical and Biological Chemistry Research Facility, SSPC, The SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
,
a   School of Chemistry, Analytical and Biological Chemistry Research Facility, SSPC, The SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
,
Simon E. Lawrence
a   School of Chemistry, Analytical and Biological Chemistry Research Facility, SSPC, The SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
,
a   School of Chemistry, Analytical and Biological Chemistry Research Facility, SSPC, The SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
,
a   School of Chemistry, Analytical and Biological Chemistry Research Facility, SSPC, The SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
b   School of Pharmacy, University College Cork, Cork, Ireland
› Institutsangaben
The authors would like to acknowledge the Irish Research Council (IRC; E. J.: GOIPG/2020/369), the Higher Education Authority (HEA; COVID-19 Related Research Costed Extension to E. J.), the SSPC, the SFI Research Centre for Pharmaceuticals supported by Science Foundation Ireland (SFI) and co-funded under the European Regional Development Fund (SFI SSPC2 12/RC/2275, SFI SSPC3 Pharm5 12/RC/2275_2, and SFI 15/RI/3221), for funding. This publication has emanated from research supported in part by a grant from Science Foundation Ireland Research Infrastructure Programme under grant numbers 15/RI/3221 and 21/RI/9705. X-ray crystallography was made possible through SFI funding (05/PICA/B802/EC07).


Abstract

Copper-mediated reactions of α-diazo-β-keto sulfonamides led to a range of products, including alkynesulfonamides, enamines, and α-halosulfonamides, with no evidence for intramolecular C–H insertion in any of the reactions, in contrast to the reactivity of the comparable α-diazo-β-oxo sulfones. Use of copper(II) triflate (5 mol%) led to the isolation of a series of alkynesulfonamides (up to 12% yield) and enamines (up to 64% yield). Use of copper(II) chloride (5 mol%) led to the formation, in addition, of α-halosulfonamides; use of stoichiometric amounts of copper(II) chloride/bromide enabled facile halogenation of the β-keto sulfonamide to form α-halosulfonamides (up to 63% yield).

Supporting Information



Publikationsverlauf

Eingereicht: 24. Mai 2024

Angenommen nach Revision: 19. Juni 2024

Accepted Manuscript online:
19. Juni 2024

Artikel online veröffentlicht:
08. August 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ye T, McKervey MA. Chem. Rev. 1994; 94: 1091
  • 2 Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
  • 3 Doyle MP, McKervey MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds . John Wiley & Sons; New York: 1998
  • 4 Dong S, Liu X, Feng X. Acc. Chem. Res. 2022; 55: 415
  • 5 Liu L, Zhang J. Chem. Soc. Rev. 2016; 45: 506
  • 6 Mix KA, Aronoff MR, Raines RT. ACS Chem. Biol. 2016; 11: 3233
  • 7 Zhang Z, Wang J. Tetrahedron 2008; 64: 6577
  • 8 Gurmessa GT, Singh GS. Res. Chem. Intermed. 2017; 43: 6447
  • 9 Ring A, Ford A, Maguire AR. Tetrahedron Lett. 2016; 57: 5399
  • 10 Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
  • 11 He Y, Huang Z, Wu K, Ma J, Zhou Y.-G, Yu Z. Chem. Soc. Rev. 2022; 51: 2759
  • 12 Davies HM. L, Liao K. Nat. Rev. Chem. 2019; 3: 347
  • 13 Berstrom BD, Nickerson LA, Shaw JT, Souza LW. Angew. Chem. Int. Ed. 2021; 60: 6864 ; Angew. Chem. 2021, 133, 6940
  • 14 Colacot TJ. J. Chem. Sci. 2000; 112: 197
  • 15 Davies HM. L, Manning JR. Nature 2008; 451: 417
  • 16 Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
  • 17 Slattery CN, Ford A, Maguire AR. Tetrahedron 2010; 66: 6681
  • 18 Nguyen T.-TH, Bosse AT, Ly D, Suarez CA, Fu J, Shimabukuro K, Musaev DG, Davies HM. L. J. Am. Chem. Soc. 2024; 146: 8447
  • 19 Davies HM. L. J. Org. Chem. 2019; 84: 12722
  • 20 Lee M, Davies HM. L. Org. Lett. 2023; 25: 4000
  • 21 Taber DF, Raman K. J. Am. Chem. Soc. 1983; 105: 5935
  • 22 Taber DF, Petty EH. J. Org. Chem. 1982; 47: 4808
  • 23 Taber DF, Ruckle RE. J. Am. Chem. Soc. 1986; 108: 7686
  • 24 Taber DF, Ruckle RE. Tetrahedron Lett. 1985; 26: 3059
  • 25 Taber DF, Raman K, Gaul MD. J. Org. Chem. 1987; 52: 28
  • 26 Kennedy M, McKervey MA, Maguire AR, Roos GH. P. J. Chem. Soc., Chem. Commun. 1990; 361
  • 27 Hashimoto S, Watanabe N, Sato T, Shiro M, Ikegami S. Tetrahedron Lett. 1993; 34: 5109
  • 28 Hashimoto S, Watanabe N, Ikegami S. Synlett 1994; 353
  • 29 Anada M, Mita O, Watanabe H, Kitagaki S, Hashimoto S. Synlett 1999; 1775
  • 30 Padwa A, Austin DJ, Price AT, Semones MA, Doyle MP, Protopopova MN, Winchester WR, Tran A. J. Am. Chem. Soc. 1993; 115: 8669
  • 31 Doyle MP, Protopopova MN, Winchester WR, Daniel KL. Tetrahedron Lett. 1992; 33: 7819
  • 32 Doyle MP, Van Oeveren A, Westrum LJ, Protopopova MN, Clayton TW. J. Am. Chem. Soc. 1991; 113: 8982
  • 33 Scott LT, DeCicco GJ. J. Am. Chem. Soc. 1974; 96: 322
  • 34 Flynn CJ, Elcoate CJ, Lawrence SE, Maguire AR. J. Am. Chem. Soc. 2010; 132: 1184
  • 35 Slattery CN, Maguire AR. Org. Biomol. Chem. 2011; 9: 667
  • 36 Shiely AE, Clarke L.-A, Flynn CJ, Buckley AM, Ford A, Lawrence SE, Maguire AR. Eur. J. Org. Chem. 2018; 2277
  • 37 Shiely AE, Slattery CN, Ford A, Eccles KS, Lawrence SE, Maguire AR. Org. Biomol. Chem. 2017; 15: 2609
  • 38 Slattery CN, Clarke L.-A, Ford A, Maguire AR. Tetrahedron 2013; 69: 1297
  • 39 Slattery C, Clarke L.-A, O’Neill S, Ring A, Ford A, Maguire A. Synlett 2012; 23: 765
  • 40 Clarke LA, Ring A, Ford A, Sinha AS, Lawrence SE, Maguire AR. Org. Biomol. Chem. 2014; 12: 7612
  • 41 Doyle MP, Hu W, Wee AG. H, Wang Z, Duncan SC. Org. Lett. 2003; 5: 407
  • 42 Doyle MP, Kalinin AV. Synlett 1995; 1075
  • 43 Doyle MP, Austin RE, Bailey AS, Dwyer MP, Dyatkin AB, Kalinin AV, Kwan MM. Y, Liras S, Oalmann CJ. J. Am. Chem. Soc. 1995; 117: 5763
  • 44 Regitz M, Maas G. Diazo Compounds: Properties and Synthesis . Academic Press; Florida: 1986
  • 45 Bubyrev A, Dar’in D, Kantin G, Krasavin M. Eur. J. Org. Chem. 2020; 4112
  • 46 Krivovicheva V, Bubyrev A, Kalinin S, Dar’in D, Gureev M, Burianova V, Vullo D, Krasavin M, Supuran CT. ChemMedChem 2023; 18: e202200607
  • 47 Levashova E, Bakulina O, Dar’in D, Bubyrev A, Chuprun S, Krasavin M. Eur. J. Org. Chem. 2020; 4239
  • 48 Krivovicheva V, Bubyrev A, Kalinin S, Dar’in D, Krasavin M. Eur. J. Org. Chem. 2022; e202201162
  • 49 Malkova K, Bubyrev A, Krivovicheva V, Dar’in D, Bunev A, Krasavin M. Beilstein J. Org. Chem. 2022; 18: 1636
  • 50 Krivovicheva V, Bubyrev A, Kalinin S, Dar’in D, Gureev M, Vullo D, Krasavin M, Korsakov M, Supuran CT. Mendeleev Commun. 2023; 33: 325
  • 51 Bubyrev A, Kantin G, Dar’in D, Krasavin M. Synthesis 2021; 53: 1434
  • 52 Bubyrev A, Malkova K, Kantin G, Dar’in D, Krasavin M. J. Org. Chem. 2021; 86: 17516
  • 53 Bubyrev A, Adamchik M, Dar’in D, Kantin G, Krasavin M. J. Org. Chem. 2021; 86: 13454
  • 54 Solovyev I, Dar’in D, Krasavin M. Tetrahedron Lett. 2021; 78: 153269
  • 55 Que C, Huang P, Yang Z, Chen N, Xu J. Molecules 2019; 24: 2628
  • 56 Huang P, Yang Z, Xu J. Tetrahedron 2017; 73: 3255
  • 57 Yang Z, Xu J. Chem. Commun. 2014; 50: 3616
  • 58 Phan Thi Thanh N, Dang Thi Thu H, Tone M, Inoue H, Iwasa S. Tetrahedron 2020; 76: 131481
  • 59 White EH, Lim HM. J. Org. Chem. 1987; 52: 2162
  • 60 Cai L, Xu R, Guo X, Pike VW. Eur. J. Org. Chem. 2012; 1303
  • 61 Javorskis T, Orentas E. J. Org. Chem. 2017; 82: 13423
  • 62 Zhong Z, Bibbs JA, Yuan W, Wong CH. J. Am. Chem. Soc. 1991; 113: 2259
  • 63 Vega JA, Alajarín R, Vaquero JJ, Alvarez-Builla J. Tetrahedron 1998; 54: 3589
  • 64 Leclercq M, Brienne M.-J. Tetrahedron Lett. 1990; 31: 3875
  • 65 Regitz M. Angew. Chem. Int. Ed. 1967; 6: 733
  • 66 Davies HM. L, Cantrell WR, Romines KR, Baum JS. Org. Synth. 1992; 70: 93
  • 67 Bollinger FW, Tuma LD. Synlett 1996; 407
  • 68 Green SP, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. Org. Process Res. Dev. 2020; 24: 67
  • 69 Miyauchi K, Hori K, Hirai T, Takebayashi M, Ibata TB. Bull. Chem. Soc. Jpn. 1981; 54: 2142
  • 70 Pellicciari R, Natalini B, Sadeghpour BM, Marinozzi M, Snyder JP, Williamson BL, Kuethe JT, Padwa A. J. Am. Chem. Soc. 1996; 118: 1
  • 71 Wenker E, McPherson CA. Synth. Commun. 1972; 2: 331
  • 72 Bayir A, Draghici C, Brewer M. J. Org. Chem. 2010; 75: 296
  • 73 Cleary SE, Hensinger MJ, Qin Z.-X, Hong X, Brewer M. J. Org. Chem. 2019; 84: 15154
  • 74 Draghici C, Brewer M. J. Am. Chem. Soc. 2008; 130: 3766
  • 75 Draghici C, Huang Q, Brewer M. J. Org. Chem. 2009; 74: 8410
  • 76 Whitman PJ, Trost BM. J. Am. Chem. Soc. 1969; 91: 7534
  • 77 Regitz M, Geelharr HJ. Chem. Ber. 1969; 102: 1743
  • 78 Massi L, Gal J, Duñach E. ChemPlusChem 2022; 87: e202200037
  • 79 Doyle MP, Trudell ML. J. Org. Chem. 1984; 49: 1196
  • 80 Sage V, Clark JH, Macquarrie DJ. J. Catal. 2004; 227: 502
  • 81 Pirrung MC, Zhang J, Lackey K, Sternbach DD, Brown F. J. Org. Chem. 1995; 60: 2112
  • 82 Doyle MP, Taunton J, Pho HQ. Tetrahedron Lett. 1989; 30: 5397
  • 83 Suhonen A, Morgan IS, Nauha E, Helttunen K, Tuononen HM, Nissinen M. Cryst. Growth Des. 2015; 15: 2602
  • 84 Sanphui P, Sarma B, Nangia A. Cryst. Growth Des. 2010; 10: 4550
  • 85 Ramesh VV. E, Kale SS, Kotmale AS, Gawade RL, Puranik VG, Rajamohanan PR, Sanjayan GJ. Org. Lett. 2013; 15: 1504
  • 86 Baldauf C, Günther R, Hofmann H.-J. J. Mol. Struct.: THEOCHEM 2004; 675: 19
  • 87 Brienne MJ, Varech D, Leclercq M, Jacques J, Radembino N, Dessalles C, Mahuzier G, Gueyouche C, Bories C. J. Med. Chem. 1987; 30: 2232
  • 88 Park WK. C, Kennedy RM, Larsen SD, Miller S, Roth BD, Song Y, Steinbaugh BA, Sun K, Tait BD, Kowala MC, Trivedi BK, Auerbach B, Askew V, Dillon L, Hanselman JC, Lin Z, Lu GH, Robertson A, Sekerke C. Bioorg. Med. Chem. Lett. 2008; 18: 1151