Semin Liver Dis 2024; 44(03): 383-393
DOI: 10.1055/a-2349-7236
Review Article

Role of Hepatocyte Nuclear Factor 4 Alpha in Liver Cancer

Manasi Kotulkar
1   Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
,
Diego Paine-Cabrera
1   Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
,
Udayan Apte
1   Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
› Institutsangaben
Funding These studies were supported by NIH R01 DK0198414 and NIH R56 DK112768 to Udayan Apte.


Abstract

Liver cancer is the sixth most common cancer and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the incidence of HCC is on the rise. Liver cancers in general and HCC in particular do not respond to chemotherapy. Radiological ablation, surgical resection, and liver transplantation are the only medical therapies currently available. Hepatocyte nuclear factor 4 α (HNF4α) is an orphan nuclear receptor expressed only in hepatocytes in the liver. HNF4α is considered the master regulator of hepatic differentiation because it regulates a significant number of genes involved in various liver-specific functions. In addition to maintaining hepatic differentiation, HNF4α also acts as a tumor suppressor by inhibiting hepatocyte proliferation by suppressing the expression of promitogenic genes and inhibiting epithelial to mesenchymal transition in hepatocytes. Loss of HNF4α expression and function is associated with rapid progression of chronic liver diseases that ultimately lead to liver cirrhosis and HCC, including metabolism-associated steatohepatitis, alcohol-associated liver disease, and hepatitis virus infection. This review summarizes the role of HNF4α in liver cancer pathogenesis and highlights its potential as a potential therapeutic target for HCC.



Publikationsverlauf

Accepted Manuscript online:
20. Juni 2024

Artikel online veröffentlicht:
16. Juli 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Sladek FM, Zhong WM, Lai E, Darnell Jr JE. Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev 1990; 4 (12B): 2353-2365
  • 2 Jiang S, Tanaka T, Iwanari H. et al. Expression and localization of P1 promoter-driven hepatocyte nuclear factor-4α (HNF4α) isoforms in human and rats. Nucl Recept 2003; 1: 5
  • 3 Drewes T, Senkel S, Holewa B, Ryffel GU. Human hepatocyte nuclear factor 4 isoforms are encoded by distinct and differentially expressed genes. Mol Cell Biol 1996; 16 (03) 925-931
  • 4 Torres-Padilla ME, Fougère-Deschatrette C, Weiss MC. Expression of HNF4alpha isoforms in mouse liver development is regulated by sequential promoter usage and constitutive 3′ end splicing. Mech Dev 2001; 109 (02) 183-193
  • 5 Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 2001; 21 (04) 1393-1403
  • 6 Walesky C, Edwards G, Borude P. et al. Hepatocyte nuclear factor 4 alpha deletion promotes diethylnitrosamine-induced hepatocellular carcinoma in rodents. Hepatology 2013; 57 (06) 2480-2490
  • 7 Walesky C, Gunewardena S, Terwilliger EF, Edwards G, Borude P, Apte U. Hepatocyte-specific deletion of hepatocyte nuclear factor-4α in adult mice results in increased hepatocyte proliferation. Am J Physiol Gastrointest Liver Physiol 2013; 304 (01) G26-G37
  • 8 Huck I, Gunewardena S, Espanol-Suner R, Willenbring H, Apte U. Hepatocyte nuclear factor 4 alpha activation is essential for termination of liver regeneration in mice. Hepatology 2019; 70 (02) 666-681
  • 9 Kotulkar M, Robarts D, Apte U. HNF 4α alpha in hepatocyte health and disease. Semin Liver Dis 2023; 43 (02) 234-244
  • 10 Gunewardena S, Huck I, Walesky C, Robarts D, Weinman S, Apte U. Progressive loss of hepatocyte nuclear factor 4 alpha activity in chronic liver diseases in humans. Hepatology 2022; 76 (02) 372-386
  • 11 Oh JH, Jun DW. The latest global burden of liver cancer: a past and present threat. Clin Mol Hepatol 2023; 29 (02) 355-357
  • 12 National Cancer Institute. Liver and bile duct cancer. Accessed 23 June 2024 at: https://www.cancer.gov/types/liver/what-is-liver-cancer/causes-risk-factors
  • 13 Rumgay H, Arnold M, Ferlay J. et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol 2022; 77 (06) 1598-1606
  • 14 Macsween RN, Burt AD, Portmann BC. et al. Pathology of the liver. In: Transplantation Pathology. Elsevier: Philadelphia, PA, 2002
  • 15 Di Tommaso L, Sangiovanni A, Borzio M, Park YN, Farinati F, Roncalli M. Advanced precancerous lesions in the liver. Best Pract Res Clin Gastroenterol 2013; 27 (02) 269-284
  • 16 Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol 2017; 34 (02) 153-159
  • 17 Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55 (02) 74-108
  • 18 Schulze K, Nault JC, Villanueva A. Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J Hepatol 2016; 65 (05) 1031-1042
  • 19 Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog 2017; 16: 1
  • 20 Clifford GM, Rickenbach M, Polesel J. et al; Swiss HIV Cohort. Influence of HIV-related immunodeficiency on the risk of hepatocellular carcinoma. AIDS 2008; 22 (16) 2135-2141
  • 21 Konopnicki D, Mocroft A, de Wit S. et al; EuroSIDA Group. Hepatitis B and HIV: prevalence, AIDS progression, response to highly active antiretroviral therapy and increased mortality in the EuroSIDA cohort. AIDS 2005; 19 (06) 593-601
  • 22 Bosch FX, Ribes J, Borràs J. Epidemiology of primary liver cancer. Semin Liver Dis 1999; 19 (03) 271-285
  • 23 Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6 (09) 674-687
  • 24 Hutchinson SJ, Bird SM, Goldberg DJ. Influence of alcohol on the progression of hepatitis C virus infection: a meta-analysis. Clin Gastroenterol Hepatol 2005; 3 (11) 1150-1159
  • 25 White DL, Kanwal F, El-Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol 2012; 10 (12) 1342-1359.e2
  • 26 Uccello M, Malaguarnera G, Corriere T, Biondi A, Basile F, Malaguarnera M. Risk of hepatocellular carcinoma in workers exposed to chemicals. Hepat Mon 2012; 12 (10 HCC): e5943
  • 27 Goodrich JA, Walker D, Lin X. et al. Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Rep Innov Hepatol 2022; 4 (10) 100550
  • 28 Pascale RM, Calvisi DF, Feo F, Simile MM. Genetic predisposition to hepatocellular carcinoma. Metabolites 2022; 13 (01) 35
  • 29 Dhanasekaran R, Bandoh S, Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000 Res 2016; 5: 5
  • 30 Ramakrishna G, Rastogi A, Trehanpati N, Sen B, Khosla R, Sarin SK. From cirrhosis to hepatocellular carcinoma: new molecular insights on inflammation and cellular senescence. Liver Cancer 2013; 2 (3–4): 367-383
  • 31 Campbell PT, Newton CC, Freedman ND. et al. Body mass index, waist circumference, diabetes, and risk of liver cancer for U.S. adults. Cancer Res 2016; 76 (20) 6076-6083
  • 32 Ramadori P, Cubero FJ, Liedtke C, Trautwein C, Nevzorova YA. Alcohol and hepatocellular carcinoma: adding fuel to the flame. Cancers (Basel) 2017; 9 (10) 130
  • 33 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115 (02) 209-218
  • 34 Falkowski O, An HJ, Ianus IA. et al. Regeneration of hepatocyte ‘buds’ in cirrhosis from intrabiliary stem cells. J Hepatol 2003; 39 (03) 357-364
  • 35 Perumpail RB, Wong RJ, Ahmed A, Harrison SA. Hepatocellular carcinoma in the setting of non-cirrhotic nonalcoholic fatty liver disease and the metabolic syndrome: US experience. Dig Dis Sci 2015; 60 (10) 3142-3148
  • 36 Cholankeril G, Patel R, Khurana S, Satapathy SK. Hepatocellular carcinoma in non-alcoholic steatohepatitis: current knowledge and implications for management. World J Hepatol 2017; 9 (11) 533-543
  • 37 Younossi ZM, Henry L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma. JHEP Rep Innov Hepatol 2021; 3 (04) 100305
  • 38 Kim W, Khan SK, Gvozdenovic-Jeremic J. et al. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 2017; 127 (01) 137-152
  • 39 Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel) 2016; 8 (02) 22
  • 40 Vilchez V, Turcios L, Marti F, Gedaly R. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol 2016; 22 (02) 823-832
  • 41 Dimri M, Satyanarayana A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers (Basel) 2020; 12 (02) 491
  • 42 Ferrín G, Guerrero M, Amado V, Rodríguez-Perálvarez M, De la Mata M. Activation of mTOR signaling pathway in hepatocellular carcinoma. Int J Mol Sci 2020; 21 (04) 1266
  • 43 Della Corte CM, Viscardi G, Papaccio F. et al. Implication of the Hedgehog pathway in hepatocellular carcinoma. World J Gastroenterol 2017; 23 (24) 4330-4340
  • 44 Liu Y, Wang X, Yang Y. Hepatic Hippo signaling inhibits development of hepatocellular carcinoma. Clin Mol Hepatol 2020; 26 (04) 742-750
  • 45 Müller M, Bird TG, Nault JC. The landscape of gene mutations in cirrhosis and hepatocellular carcinoma. J Hepatol 2020; 72 (05) 990-1002
  • 46 Xu X, Tao Y, Shan L. et al. The role of MicroRNAs in hepatocellular carcinoma. J Cancer 2018; 9 (19) 3557-3569
  • 47 Wolfe A, Thomas A, Edwards G, Jaseja R, Guo GL, Apte U. Increased activation of the Wnt/β-catenin pathway in spontaneous hepatocellular carcinoma observed in farnesoid X receptor knockout mice. J Pharmacol Exp Ther 2011; 338 (01) 12-21
  • 48 Rudraiah S, Zhang X, Wang L. Nuclear receptors as therapeutic targets in liver disease: are we there yet?. Annu Rev Pharmacol Toxicol 2016; 56: 605-626
  • 49 Huang W, Zhang J, Washington M. et al. Xenobiotic stress induces hepatomegaly and liver tumors via the nuclear receptor constitutive androstane receptor. Mol Endocrinol 2005; 19 (06) 1646-1653
  • 50 Raghunath A, Sundarraj K, Arfuso F, Sethi G, Perumal E. Dysregulation of Nrf2 in hepatocellular carcinoma: role in cancer progression and chemoresistance. Cancers (Basel) 2018; 10 (12) 481
  • 51 Zhang M, Zhang C, Zhang L. et al. Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma. BMC Cancer 2015; 15: 531
  • 52 Boyault S, Rickman DS, de Reyniès A. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007; 45 (01) 42-52
  • 53 Llovet JM, Kelley RK, Villanueva A. et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2021; 7 (01) 6
  • 54 Sladek FM. The yin and yang of proliferation and differentiation: cyclin D1 inhibits differentiation factors ChREBP and HNF4α. Cell Cycle 2012; 11 (17) 3156-3157
  • 55 Gonzalez FJ. Regulation of hepatocyte nuclear factor 4 alpha-mediated transcription. Drug Metab Pharmacokinet 2008; 23 (01) 2-7
  • 56 Walesky C, Apte U. Role of hepatocyte nuclear factor 4α (HNF4α) in cell proliferation and cancer. Gene Expr 2015; 16 (03) 101-108
  • 57 Ning BF, Ding J, Yin C. et al. Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma. Cancer Res 2010; 70 (19) 7640-7651
  • 58 Yin C, Lin Y, Zhang X. et al. Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-4alpha gene. Hepatology 2008; 48 (05) 1528-1539
  • 59 D'Angiolella V, Donato V, Forrester FM. et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 2012; 149 (05) 1023-1034
  • 60 Yin C, Wang PQ, Xu WP. et al. Hepatocyte nuclear factor-4α reverses malignancy of hepatocellular carcinoma through regulating miR-134 in the DLK1-DIO3 region. Hepatology 2013; 58 (06) 1964-1976
  • 61 Hwang-Verslues WW, Sladek FM. Nuclear receptor hepatocyte nuclear factor 4alpha1 competes with oncoprotein c-Myc for control of the p21/WAF1 promoter. Mol Endocrinol 2008; 22 (01) 78-90
  • 62 Battle MA, Konopka G, Parviz F. et al. Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci U S A 2006; 103 (22) 8419-8424
  • 63 Späth GF, Weiss MC. Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells. J Cell Biol 1998; 140 (04) 935-946
  • 64 Taniguchi H, Fujimoto A, Kono H, Furuta M, Fujita M, Nakagawa H. Loss-of-function mutations in Zn-finger DNA-binding domain of HNF4A cause aberrant transcriptional regulation in liver cancer. Oncotarget 2018; 9 (40) 26144-26156
  • 65 Kalkuhl A, Kaestner K, Buchmann A, Schwarz M. Expression of hepatocyte-enriched nuclear transcription factors in mouse liver tumours. Carcinogenesis 1996; 17 (03) 609-612
  • 66 Lazarevich NL, Al'pern DV. Hepatocyte nuclear factor 4 (HNF4) in epithelial development and carcinogenesis [in Russian]. Mol Biol (Mosk) 2008; 42 (05) 786-797
  • 67 Lazarevich NL, Shavochkina DA, Fleishman DI. et al. Deregulation of hepatocyte nuclear factor 4 (HNF4)as a marker of epithelial tumors progression. Exp Oncol 2010; 32 (03) 167-171
  • 68 Ji D, Chen GF, Wang JC. et al. Identification of TAF1, HNF4A, and CALM2 as potential therapeutic target genes for liver fibrosis. J Cell Physiol 2019; 234 (06) 9045-9051
  • 69 Argemi J, Latasa MU, Atkinson SR. et al. Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nat Commun 2019; 10 (01) 3126
  • 70 Lazarevich NL, Cheremnova OA, Varga EV. et al. Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors. Hepatology 2004; 39 (04) 1038-1047
  • 71 Fekry B, Ribas-Latre A, Baumgartner C. et al. HNF4α-deficient fatty liver provides a permissive environment for sex-independent hepatocellular carcinoma. Cancer Res 2019; 79 (22) 5860-5873
  • 72 Cai SH, Lu SX, Liu LL, Zhang CZ, Yun JP. Increased expression of hepatocyte nuclear factor 4 alpha transcribed by promoter 2 indicates a poor prognosis in hepatocellular carcinoma. Therap Adv Gastroenterol 2017; 10 (10) 761-771
  • 73 Tanaka T, Jiang S, Hotta H. et al. Dysregulated expression of P1 and P2 promoter-driven hepatocyte nuclear factor-4alpha in the pathogenesis of human cancer. J Pathol 2006; 208 (05) 662-672
  • 74 Fekry B, Ribas-Latre A, Baumgartner C. et al. Incompatibility of the circadian protein BMAL1 and HNF4α in hepatocellular carcinoma. Nat Commun 2018; 9 (01) 4349
  • 75 Deans JR, Deol P, Titova N. et al. HNF4α isoforms regulate the circadian balance between carbohydrate and lipid metabolism in the liver. Front Endocrinol (Lausanne) 2023; 14: 1266527
  • 76 Battistelli C, Sabarese G, Santangelo L. et al. The lncRNA HOTAIR transcription is controlled by HNF4α-induced chromatin topology modulation. Cell Death Differ 2019; 26 (05) 890-901
  • 77 Cicchini C, de Nonno V, Battistelli C. et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta 2015; 1849 (08) 919-929
  • 78 Morimoto A, Kannari M, Tsuchida Y. et al. An HNF4α-microRNA-194/192 signaling axis maintains hepatic cell function. J Biol Chem 2017; 292 (25) 10574-10585
  • 79 Cicchini C, Amicone L, Alonzi T, Marchetti A, Mancone C, Tripodi M. Molecular mechanisms controlling the phenotype and the EMT/MET dynamics of hepatocyte. Liver Int 2015; 35 (02) 302-310
  • 80 Cicchini C, Laudadio I, Citarella F. et al. TGFbeta-induced EMT requires focal adhesion kinase (FAK) signaling. Exp Cell Res 2008; 314 (01) 143-152
  • 81 Cozzolino AM, Alonzi T, Santangelo L. et al. TGFβ overrides HNF4α tumor suppressing activity through GSK3β inactivation: implication for hepatocellular carcinoma gene therapy. J Hepatol 2013; 58 (01) 65-72
  • 82 Desai SS, Tung JC, Zhou VX. et al. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology 2016; 64 (01) 261-275
  • 83 Saha SK, Parachoniak CA, Ghanta KS. et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 2014; 513 (7516) 110-114
  • 84 Kim DU. Are the immunohistochemistry-based biomarkers helpful for predicting prognosis in patients with surgically resected cholangiocarcinoma?. Gut Liver 2023; 17 (01) 10-11
  • 85 Cairo S, Armengol C, De Reyniès A. et al. Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell 2008; 14 (06) 471-484
  • 86 Gest C, Sena S, Dif L. et al. Antagonism between wild-type and mutant β-catenin controls hepatoblastoma differentiation via fascin-1. JHEP Rep Innov Hepatol 2023; 5 (05) 100691
  • 87 Smith JL, Rodríguez TC, Mou H. et al. YAP1 withdrawal in hepatoblastoma drives therapeutic differentiation of tumor cells to functional hepatocyte-like cells. Hepatology 2021; 73 (03) 1011-1027
  • 88 Rivas M, Aguiar T, Fernandes G. et al. DNA methylation as a key epigenetic player for hepatoblastoma characterization. Clin Res Hepatol Gastroenterol 2021; 45 (03) 101684
  • 89 Sekiguchi M, Seki M, Kawai T. et al. Integrated multiomics analysis of hepatoblastoma unravels its heterogeneity and provides novel druggable targets. NPJ Precis Oncol 2020; 4: 20
  • 90 Block JB. Angiosarcoma of the liver following vinyl chloride exposure. JAMA 1974; 229 (01) 53-54
  • 91 Wahlang B, Hardesty JE, Head KZ. et al. hepatic injury caused by the environmental toxicant vinyl chloride is sex-dependent in mice. Toxicol Sci 2020; 174 (01) 79-91
  • 92 Villanueva A. Hepatocellular carcinoma. N Engl J Med 2019; 380 (15) 1450-1462
  • 93 Yue HY, Yin C, Hou JL. et al. Hepatocyte nuclear factor 4alpha attenuates hepatic fibrosis in rats. Gut 2010; 59 (02) 236-246
  • 94 Song K, Han C, Zhang J. et al. Epigenetic regulation of MicroRNA-122 by peroxisome proliferator activated receptor-gamma and hepatitis b virus X protein in hepatocellular carcinoma cells. Hepatology 2013; 58 (05) 1681-1692
  • 95 Meijer I, Willems S, Ni X, Heering J, Chaikuad A, Merk D. Chemical starting matter for HNF4α ligand discovery and chemogenomics. Int J Mol Sci 2020; 21 (21) 7895
  • 96 Sajeev A, Hegde M, Girisa S. et al. Oroxylin A: a promising flavonoid for prevention and treatment of chronic diseases. Biomolecules 2022; 12 (09) 1185
  • 97 Wei L, Dai Y, Zhou Y. et al. Oroxylin A activates PKM1/HNF4 alpha to induce hepatoma differentiation and block cancer progression. Cell Death Dis 2017; 8 (07) e2944
  • 98 Yang T, Poenisch M, Khanal R. et al. Therapeutic HNF4A mRNA attenuates liver fibrosis in a preclinical model. J Hepatol 2021; 75 (06) 1420-1433