Synthesis
DOI: 10.1055/a-2350-1248
paper
Recent Advancements in the Chemistry of Diazo Compounds

Visible-Light-Mediated gem-Difunctionalization of Diazo Compounds with Vinyl Sulfoxonium Ylides and Thiols

Srashti Bhardwaj
,
Raju Sen
,
Payel Adhikari
,
Janakiram Vaitla
This work was supported by the Science and Engineering Research Board (CRG/2023/000584).


Abstract

A visible-light-induced multicomponent reaction of vinyl sulfoxonium ylide, thiol, and diazo ester to generate tertiary sulfide is described. The present diastereoselective gem-difunctionalization of the diazo ester can be achieved under mild conditions, as it does not require any additives, catalysts, or transition metals and is tolerant of air and moisture. Due to more nucleophilicity, vinyl sulfoxonium ylide undergoes S–H insertion with thiols to generate an allyl sulfide intermediate. Simultaneously, diazo ester undergoes photolysis to generate a carbene intermediate. Subsequently, the coupling of carbene and allyl sulfide intermediates generates sulfonium ylide, which undergoes Doyle–Kirmse rearrangement to generate tertiary sulfide scaffolds.

Supporting Information



Publikationsverlauf

Eingereicht: 08. Mai 2024

Angenommen nach Revision: 21. Juni 2024

Accepted Manuscript online:
21. Juni 2024

Artikel online veröffentlicht:
15. Juli 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gillingham D, Fei N. Chem. Soc. Rev. 2013; 42: 4918
    • 1b Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 1c Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 1d Soam P, Kamboj P, Tyagi V. Asian J. Org. Chem. 2021; 11: e202100570
    • 1e Davas DS, Bhardwaj S, Sen R, Gopalakrishnan DK, Vaitla J. Adv. Synth. Catal. 2022; 364: 3122
    • 2a Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Chem. Soc. Rev. 2020; 49: 6833
    • 2b Durka J, Turkowska J, Gryko D. ACS Sustainable Chem. Eng. 2021; 9: 8895
    • 2c Ciszewski LW, Rybicka-Jasinska K, Gryko D. Org. Biomol. Chem. 2019; 17: 432
    • 2d Empel C, Pei C, Koenigs RM. Chem. Commun. 2022; 58: 2788
    • 2e Xuan J, Cai B. Chin.J. Org. Chem. 2021; 41: 4565
  • 3 Jurberg ID, Davies HM. L. Chem. Sci. 2018; 9: 5112
    • 4a Bayer A, Vaitla J. Synthesis 2018; 51: 612
    • 4b Caiuby CA. D, Furniel LG, Burtoloso AC. B. Chem. Sci. 2022; 13: 1192
    • 4c Cheng J, Wu X, Sun S, Yu J.-T. Synlett 2018; 30: 21
    • 4d Bisag GD, Ruggieri S, Fochi M, Bernardi L. Org. Biomol. Chem. 2020; 18: 8793
    • 4e Sen R, Bhardwaj S, Bar K, Deshwal S, Vaitla J. Chem. Commun. 2023; 59: 12411
    • 5a Trost BM. J. Am. Chem. Soc. 2002; 88: 1587
    • 5b Burtoloso AC. B, Dias RM. P, Leonarczyk IA. Eur. J. Org. Chem. 2013; 5005
    • 5c Zhang JJ, Schuster GB. J. Am. Chem. Soc. 2002; 111: 7149
    • 5d Xia XD, Lu LQ, Liu WQ, Chen DZ, Zheng YH, Wu LZ, Xiao WJ. Chem. Eur. J. 2016; 22: 8432
    • 5e Pramanik MM. D, Yuan F, Yan DM, Xiao WJ, Chen JR. Org. Lett. 2020; 22: 2639
    • 6a Li L, Deng K, Xing Y, Ma C, Ni SF, Wang Z, Huang Y. Nat. Commun. 2022; 13: 6588
    • 6b Davas DS, Gopalakrishnan DK, Kumar S, Anmol, Karmakar T, Vaitla J. JACS Au 2024; 4: 1073
  • 7 Echemendia R, de Oliveira KT, Burtoloso AC. B. Org. Lett. 2022; 24: 6386
  • 8 Dong Y, Tian Y, Zhang Z, Wang T. Adv. Synth. Catal. 2022; 364: 4026
  • 9 Munaretto LS, Dos Santos CY, Gallo RD. C, Okada CY. Jr, Deflon VM, Jurberg ID. Org. Lett. 2021; 23: 9292
  • 10 Ye C, Cai BG, Lu J, Cheng X, Li L, Pan ZW, Xuan J. J. Org. Chem. 2021; 86: 1012
    • 11a Davas DS, Gopalakrishnan DK, Kumar D, Vaitla J. Org. Lett. 2022; 24: 8359
    • 11b Bhardwaj S, Gopalakrishnan DK, Garg D, Vaitla J. JACS Au 2023; 3: 252
    • 11c Davas DS, Gopalakrishnan DK, Bar K, Kumar S, Karmakar T, Vaitla J. Org. Lett. 2023; 25: 8992
    • 11d Gopalakrishnan DK, Panigrahi S, Sen R, Vaitla J. Org. Lett. 2023; 25: 1519
    • 11e Deshwal S, Davas DS, Bhardwaj S, Vaitla J. Org. Lett. 2024; 26: 809
    • 12a Gopalakrishnan DK, Bhardwaj S, Kumar S, Karmakar T, Vaitla J. Chem. Commun. 2024; 60: 3846
    • 12b Vaitla J, Bayer A, Hopmann KH. Angew. Chem. Int. Ed. 2018; 57: 16180
  • 13 Bhardwaj S, Gopalakrishnan DK, Deshwal S, Sen R, Tiwari V, Karmakar T, Vaitla J. ACS Catal. 2024; 14: 2805
    • 14a Clayden J, Maclellan P. Beilstein J. Org. Chem. 2011; 7: 582
    • 14b Yang XH, Davison RT, Dong VM. J. Am. Chem. Soc. 2018; 140: 10443
  • 15 Qu C, Hao J, Ding H, Lv Y, Zhao XE, Zhao X, Wei W. J. Org. Chem. 2022; 87: 12921
  • 16 Yang J, Wang J, Huang H, Qin G, Jiang Y, Xiao T. Org. Lett. 2019; 21: 2654
  • 17 Hommelsheim R, Guo Y, Yang Z, Empel C, Koenigs RM. Angew. Chem. Int. Ed. 2019; 58: 1203
  • 18 Orlowska K, Rybicka-Jasinska K, Krajewski P, Gryko D. Org. Lett. 2020; 22: 1018
  • 19 Hu M, Ni C, Li L, Han Y, Hu J. J. Am. Chem. Soc. 2015; 137: 14496