Klinische Neurophysiologie 2024; 55(03): 153-162
DOI: 10.1055/a-2352-0458
Übersicht

Moderne Methoden und Anwendungsgebiete der retinalen Bildgebung

Modern Methods and Applications of Retinal Imaging
Josephine Wauschkuhn
1   Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
,
Nikolaus Feucht
2   Klinik und Poliklinik für Augenheilkunde, Klinikum rechts der Isar der Technischen Universität München, München, Germany
3   MVZ Augenklinik Airport, München, Deutschland
,
Lilian Aly
1   Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
› Author Affiliations

Zusammenfassung

Bildgebung spielt in der Neurologie eine große Rolle, dies gilt inzwischen auch zunehmend für den Bereich der Retina. Langjährig etablierte Methoden wie die Fluoreszenzangiographie und die Funduskopie wurden in den letzten Jahren ergänzt um die optische Kohärenztomographie (OCT) und OCT-Angiographie, sowie die dynamische Gefäßanalyse. Nach initial primär wissenschaftlicher Anwendung können diese modernen Methoden retinaler Bildgebung nun auch für diagnostische und prognostische Fragestellungen gewinnbringend herangezogen werden und werden kontinuierlich weiterentwickelt. Anhand exemplarischer Erkrankungen werden typische Befunde der Bildgebungsmethoden beschrieben.

Abstract

Imaging plays a major role in neurology, and this is now also increasingly true for the retina. Long-established methods such as fluorescein angiography and funduscopy have been supplemented in recent years by optical coherence tomography (OCT) and OCT angiography, as well as dynamic vessel analysis. After initially being used primarily for scientific purposes, these modern methods of retinal imaging can now also be used profitably for diagnostic and prognostic purposes and are being continuously developed further. Typical findings of the imaging methods are described on the basis of exemplary diseases.



Publication History

Article published online:
09 September 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Aumann S, Donner S, Fischer J. et al. Optical Coherence Tomography (OCT): Principle and Technical Realization. In: Bille JF, Hrsg. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics. Cham (CH): Springer Copyright 2019, The Author(s); 2019: 59-85
  • 2 Tewarie P, Balk L, Costello F. et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One 2012; 7: e34823
  • 3 de Carlo TE, Zahid S, Bohm KJ. et al. Simulating vascular leakage on optical coherence tomography angiography using an overlay technique with corresponding thickness maps. Br J Ophthalmol 2020; 104: 514-517
  • 4 Wicklein R, Yam C, Noll C. et al. The OSCAR-MP Consensus Criteria for Quality Assessment of Retinal Optical Coherence Tomography Angiography. Neurol Neuroimmunol Neuroinflamm 2023; 10
  • 5 Vilser W, Nagel E, Lanzl I. Retinal Vessel Analysis – new possibilities. Biomedizinische Technik Biomedical engineering 2002; 47: 682-685
  • 6 Costello F, Coupland S, Hodge W. et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59: 963-969
  • 7 Scott CJ, Kardon RH, Lee AG. et al. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol 2010; 128: 705-711
  • 8 Fard MA, Sahraiyan A, Jalili J. et al. Optical Coherence Tomography Angiography in Papilledema Compared With Pseudopapilledema. Invest Ophthalmol Vis Sci 2019; 60: 168-175
  • 9 Bennett JL. Optic Neuritis. Continuum (Minneap Minn) 2019; 25: 1236-1264
  • 10 Chen JJ, Sotirchos ES, Henderson AD. et al. OCT retinal nerve fiber layer thickness differentiates acute optic neuritis from MOG antibody-associated disease and Multiple Sclerosis: RNFL thickening in acute optic neuritis from MOGAD vs MS. Mult Scler Relat Disord 2022; 58: 103525
  • 11 Pakeerathan T, Havla J, Schwake C. et al. Characteristic retinal atrophy pattern allows differentiation between pediatric MOGAD and MS after a single optic neuritis episode. J Neurol 2022; 269: 6366-6376
  • 12 Nolan-Kenney RC, Liu M, Akhand O. et al. Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: An international study. Ann Neurol 2019; 85: 618-629
  • 13 Petzold A, Balcer LJ, Calabresi PA. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2017; 16: 797-812
  • 14 Liu KC, Bhatti MT, Chen JJ. et al. Presentation and Progression of Papilledema in Cerebral Venous Sinus Thrombosis. Am J Ophthalmol 2020; 213: 1-8
  • 15 Dhoot R, Margolin E. Papilledema. In StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Edward Margolin declares no relevant financial relationships with ineligible companies.: StatPearls Publishing Copyright © 2024. StatPearls Publishing LLC; 2024
  • 16 Albrecht P, Blasberg C, Ringelstein M. et al. Optical coherence tomography for the diagnosis and monitoring of idiopathic intracranial hypertension. J Neurol 2017; 264: 1370-1380
  • 17 Tarhan M, Halfwassen C, Meller D. et al. Stellenwert der Fluoreszenzangiographie zur Differenzierung zwischen einer frühen Stauungspapille und einer Papillitis. Die Ophthalmologie 2024; 121: 135-140
  • 18 Kaufhold F, Zimmermann H, Schneider E. et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS One 2013; 8: e71145
  • 19 Burggraaff MC, Trieu J, de Vries-Knoppert WA. et al. The clinical spectrum of microcystic macular edema. Invest Ophthalmol Vis Sci 2014; 55: 952-961
  • 20 Ahn SJ, Woo SJ, Park KH. et al. Retinal and choroidal changes and visual outcome in central retinal artery occlusion: an optical coherence tomography study. Am J Ophthalmol 2015; 159: 667-676
  • 21 Feucht N, Zapp D, Reznicek L. et al. Multimodal imaging in acute retinal ischemia: spectral domain OCT, OCT-angiography and fundus autofluorescence. Int J Ophthalmol 2018; 11: 1521-1527
  • 22 Ahn SJ, Woo SJ, Park KH. Retinal and choroidal changes with severe hypertension and their association with visual outcome. Invest Ophthalmol Vis Sci 2014; 55: 7775-7785
  • 23 Sun Z, Yang D, Tang Z. et al. Optical coherence tomography angiography in diabetic retinopathy: an updated review. Eye (Lond) 2021; 35: 149-161
  • 24 Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E. et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 2014; 75: 98-107
  • 25 Britze J, Frederiksen JL. Optical coherence tomography in multiple sclerosis. Eye (Lond) 2018; 32: 884-888
  • 26 Outteryck O, Lopes R, Drumez É. et al. Optical coherence tomography for detection of asymptomatic optic nerve lesions in clinically isolated syndrome. Neurology 2020; 95: e733-e744
  • 27 Mutlu U, Ikram MK, Roshchupkin GV. et al. Thinner retinal layers are associated with changes in the visual pathway: A population-based study. Hum Brain Mapp 2018; 39: 4290-4301
  • 28 Sun Z, Zhang B, Smith S. et al Structural correlations between brain magnetic resonance image-derived phenotypes and retinal neuroanatomy. Eur J Neurol 2024; e16288 10.1111/ene.16288
  • 29 Yamashita T, Miki A, Goto K. et al. Retinal Ganglion Cell Atrophy in Homonymous Hemianopia due to Acquired Occipital Lesions Observed Using Cirrus High-Definition-OCT. J Ophthalmol 2016; 2016: 2394957
  • 30 Wauschkuhn J, Solorza Buenrostro G, Aly L. et al. Retinal ganglion cell loss is associated with future disability worsening in early relapsing-remitting multiple sclerosis. Eur J Neurol 2023; 30: 982-990
  • 31 Zimmermann HG, Knier B, Oberwahrenbrock T. et al. Association of Retinal Ganglion Cell Layer Thickness With Future Disease Activity in Patients With Clinically Isolated Syndrome. JAMA Neurol 2018; 75: 1071-1079
  • 32 Knier B, Leppenetier G, Wetzlmair C. et al. Association of Retinal Architecture, Intrathecal Immunity, and Clinical Course in Multiple Sclerosis. JAMA Neurol 2017; 74: 847-856
  • 33 Button J, Al-Louzi O, Lang A. et al. Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: A retrospective study. Neurology 2017; 88: 525-532
  • 34 Bsteh G, Hegen H, Altmann P. et al. Retinal layer thinning predicts treatment failure in relapsing multiple sclerosis. Eur J Neurol 2021; 28: 2037-2045
  • 35 Huang SC, Pisa M, Guerrieri S. et al. Optical coherence tomography with voxel-based morphometry: a new tool to unveil focal retinal neurodegeneration in multiple sclerosis. Brain Commun 2024; 6: fcad249
  • 36 Bsteh G, Hegen H, Altmann P. et al. Diagnostic Performance of Adding the Optic Nerve Region Assessed by Optical Coherence Tomography to the Diagnostic Criteria for Multiple Sclerosis. Neurology 2023; 101: e784-e793
  • 37 Oertel FC, Kuchling J, Zimmermann H. et al. Microstructural visual system changes in AQP4-antibody-seropositive NMOSD. Neurol Neuroimmunol Neuroinflamm 2017; 4: e334
  • 38 Aly L, Strauß EM, Feucht N. et al. Optical coherence tomography angiography indicates subclinical retinal disease in neuromyelitis optica spectrum disorders. Mult Scler 2022; 28: 522-531
  • 39 Roca-Fernández A, Oertel FC, Yeo T. et al. Foveal changes in aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder are independent of optic neuritis and not overtly progressive. Eur J Neurol 2021; 28: 2280-2293
  • 40 Wagner SK, Romero-Bascones D, Cortina-Borja M. et al. Retinal Optical Coherence Tomography Features Associated With Incident and Prevalent Parkinson Disease. Neurology 2023; 101: e1581-e1593
  • 41 Chrysou A, Jansonius NM, van Laar T. Retinal layers in Parkinsonʼs disease: A meta-analysis of spectral-domain optical coherence tomography studies. Parkinsonism Relat Disord 2019; 64: 40-49
  • 42 Katsimpris A, Papadopoulos I, Voulgari N. et al. Optical coherence tomography angiography in Parkinson’s disease: a systematic review and meta-analysis. Eye 2023; 37: 2847-2854
  • 43 Kao CC, Hsieh HM, Chang YC. et al. Optical Coherence Tomography Assessment of Macular Thickness in Alzheimerʼs Dementia with Different Neuropsychological Severities. J Pers Med 2023; 13
  • 44 Ko F, Muthy ZA, Gallacher J. et al. Association of Retinal Nerve Fiber Layer Thinning With Current and Future Cognitive Decline: A Study Using Optical Coherence Tomography. JAMA Neurol 2018; 75: 1198-1205
  • 45 Katsimpris A, Karamaounas A, Sideri AM. et al. Optical coherence tomography angiography in Alzheimerʼs disease: a systematic review and meta-analysis. Eye (Lond) 2022; 36: 1419-1426
  • 46 Liu B, Hu Y, Ma G. et al. Reduced Retinal Microvascular Perfusion in Patients With Stroke Detected by Optical Coherence Tomography Angiography. Front Aging Neurosci 2021; 13: 628336
  • 47 Wong TY, Klein R, Couper DJ. et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. Lancet 2001; 358: 1134-1140
  • 48 Conzen C, Albanna W, Weiss M. et al. Vasoconstriction and Impairment of Neurovascular Coupling after Subarachnoid Hemorrhage: a Descriptive Analysis of Retinal Changes. Transl Stroke Res 2018; 9: 284-293
  • 49 Xu Y, Su Y, Hua D. et al. Enhanced Visualization of Retinal Microvasculature via Deep Learning on OCTA Image Quality. Dis Markers 2021; 2021: 1373362
  • 50 Alam M, Le D, Son T. et al. AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography. Biomed Opt Express 2020; 11: 5249-5257