Rofo 2025; 197(04): 385-396
DOI: 10.1055/a-2357-6997
Review

Prenatal imaging – role of fetal MRI

Artikel in mehreren Sprachen: English | deutsch
Manuela Tavares de Sousa
1   Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Ringgold ID: RIN37734)
,
Björn P. Schönnagel
2   Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Ringgold ID: RIN37734)
,
Jonas Denecke
3   Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Ringgold ID: RIN37734)
,
Jochen Herrmann
2   Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (Ringgold ID: RIN37734)
› Institutsangaben

Abstract

Background

Congenital abnormalities occur in about 3 in 100 fetuses. Prenatal ultrasound is the standard technique to detect these fetal abnormalities. In Germany, three ultrasound examinations are provided in the first, second, and third trimesters, respectively. Fetal magnetic resonance imaging (MRI) can be used as an adjunct technique to provide further information in cases of congenital abnormalities.

Method

A literature search was performed on PubMed focusing on publications that used fetal MRI as a secondary approach after prenatal ultrasound.

Results

MRI is a safe imaging method that does not harm the fetus when used during pregnancy. Some publications with experts in radiology show a very clear diagnostic advantage with respect to performing MRI on fetuses with brain abnormalities, while other publications with experts in neurosonography do not find the advantage to be that evident. Both techniques are clearly user-dependent.

Conclusion

Fetal MRI can supplement the information obtained by fetal ultrasound and can provide additional information or exclude others. Diagnosis made by an interdisciplinary cooperation based on all available ultrasound and MRI findings is the key to optimal imaging and advice for expectant parents.

Key Points

  • Fetal MRI poses no risk for the fetus.

  • MRI aids prenatal ultrasound in the evaluation of prenatal findings.

Citation Format

  • Tavares de Sousa M, Schönnagel BP, Denecke J et al. Prenatal imaging - role of fetal MRI. Fortschr Röntgenstr 2025; 197: 385–396



Publikationsverlauf

Eingereicht: 07. März 2024

Angenommen nach Revision: 05. Juni 2024

Artikel online veröffentlicht:
06. Dezember 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 European Commission, European platform on rare disease Registration, EUROCAT data on prevalence charts and tables, last update 11/2023. Zugriff am 24. Februar 2024 unter: https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prevalence_en
  • 2 Peyvandi S, De Santiago V, Chakkarapani E. et al. Association of Prenatal Diagnosis of Critical Congenital Heart Disease With Postnatal Brain Development and the Risk of Brain Injury. JAMA Pediatr 2016; 170: e154450
  • 3 Prayer D, Malinger G, De Catte L. et al. ISUOG Practice Guidelines (updated): performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 2023; 61: 278-287
  • 4 Syngelaki A, Hammami A, Bower S. et al. Diagnosis of fetal non-chromosomal abnormalities on routine ultrasound examination at 11–13 weeks' gestation. Ultrasound Obstet Gynecol 2019; 54: 468-476
  • 5 Richtlinie des Bundesausschusses der Ärzte und Krankenkassen über die Betreuung während der Schwangerschaft und nach der Entbindung („Mutterschafts-Richtlinien“) in der Fassung vom 10. Dezember 1985 (veröffentlicht im Bundesanzeiger Nr. 60a vom 27. März 1986). 1985
  • 6 Merz E, Eichhorn KH, von Kaisenberg C. et al. Aktualisierte Qualitätsanforderungen an die weiterführende differenzierte Ultraschalluntersuchung in der pränatalen Diagnostik (= DEGUM-Stufe II) im Zeitraum von 18 + 0 bis 21 + 6 Schwangerschaftswochen [Updated quality requirements regarding secondary differentiated ultrasound examination in prenatal diagnostics (= DEGUM level II) in the period from 18 + 0 to 21 + 6 weeks of gestation]. Ultraschall Med 2012; 33: 593-596
  • 7 Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen. Ultraschallscreening in der Schwangerschaft: Testgüte hinsichtlich der Entdeckungsrate fetaler Anomalien. Abschlussbericht 505–03. IQwic. Köln: 2008
  • 8 Hendler I, Blackwell SC, Bujold E. et al. The impact of maternal obesity on midtrimester sonographic visualization of fetal cardiac and craniospinal structures. Int J Obes Relat Metab Disord 2004; 28: 1607-1611
  • 9 Frates MC, Kumar AJ, Benson CB. et al. Fetal anomalies: comparison of MR imaging and US for diagnosis. Radiology 2004; 232: 398-404
  • 10 Guo Y, Luo BN. The state of the art of fetal magnetic resonance imaging. Chin Med J (Engl) 2006; 119: 1294-1299
  • 11 Chartier AL, Bouvier MJ, McPherson DR. et al. The Safety of Maternal and Fetal MRI at 3 T. Am J Roentgenol 2019; 213: 1170-1173
  • 12 Panych LP, Madore B. The physics of MRI safety. J Magn Reson Imaging 2018; 47: 28-43
  • 13 Mittendorff L, Young A, Sim J. A narrative review of current and emerging MRI safety issues: What every MRI technologist (radiographer) needs to know. J Med Radiat Sci 2022; 69: 250-260
  • 14 Asenbaum U, Brugger PC, Woitek R. et al. Indikationen und Technik der fetalen Magnetresonanztomographie [Indications and technique of fetal magnetic resonance imaging]. Radiologe 2013; 53: 109-115
  • 15 Di Mascio D, Khalil A, Rizzo G. et al. Reference ranges for fetal brain structures using magnetic resonance imaging: systematic review. Ultrasound Obstet Gynecol 2022; 59: 296-303
  • 16 Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardio- vascular MRI – A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. Fortschr Röntgenstr 2022; 194: 841-851
  • 17 van Amerom JF, Goolaub DS, Schrauben EM. et al. Fetal cardiovascular blood flow MRI: techniques and applications. Br J Radiol 2023;
  • 18 Kühle H, Cho SKS, Barber N. et al. Advanced imaging of fetal cardiac function. Front Cardiovasc Med 2023;
  • 19 Griffiths PD, Brackley K, Bradburn M. et al. Anatomical subgroup analysis of the MERIDIAN cohort: ventriculomegaly. Ultrasound Obstet Gynecol 2017; 50: 736-744
  • 20 Di Mascio D, Khalil A, Thilaganathan B. et al. Role of prenatal magnetic resonance imaging in fetuses with isolated mild or moderate ventriculomegaly in the era of neurosonography: international multicenter study. Ultrasound Obstet Gynecol 2020; 56: 340-347
  • 21 Di Mascio D, Khalil A, Pilu G. et al. Role of prenatal magnetic resonance imaging in fetuses with isolated severe ventriculomegaly at neurosonography: A multicenter study. Eur J Obstet Gynecol Reprod Biol 2021; 267: 105-110
  • 22 Heaphy-Henault KJ, Guimaraes CV, Mehollin-Ray AR. et al. Congenital Aqueductal Stenosis: Findings at Fetal MRI That Accurately Predict a Postnatal Diagnosis. Am J Neuroradiol 2018; 39: 942-948
  • 23 Sileo FG, Pilu G, Prayer D. et al. Role of prenatal magnetic resonance imaging in fetuses with isolated anomalies of corpus callosum: multinational study. Ultrasound Obstet Gynecol 2021; 58: 26-33
  • 24 Diogo MC, Glatter S, Prayer D. et al. Improved neurodevelopmental prognostication in isolated corpus callosal agenesis: fetal magnetic resonance imaging-based scoring system. Ultrasound Obstet Gynecol 2021; 58: 34-41
  • 25 Griffiths PD, Brackley K, Bradburn M. et al. Anatomical subgroup analysis of the MERIDIAN cohort: failed commissuration. Ultrasound Obstet Gynecol 2017; 50: 753-760
  • 26 Sileo FG, Di Mascio D, Rizzo G. et al. Role of prenatal magnetic resonance imaging in fetuses with isolated agenesis of corpus callosum in the era of fetal neurosonography: A systematic review and meta-analysis. Acta Obstet Gynecol Scand 2021; 100: 7-16
  • 27 Barkovich AJ, Kuzniecky RI, Jackson GD. et al. A developmental and genetic classification for malformations of cortical development. Neurology 2005; 65: 1873-1887
  • 28 Barkovich AJ, Guerrini R, Kuzniecky RI. et al. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135: 1348-1369
  • 29 Lerman-Sagie T, Pogledic I, Leibovitz Z. et al. A practical approach to prenatal diagnosis of malformations of cortical development. Eur J Paediatr Neurol 2021; 34: 50-61
  • 30 Griffiths PD, Brackley K, Bradburn M. et al. Anatomical subgroup analysis of the MERIDIAN cohort: posterior fossa abnormalities. Ultrasound Obstet Gynecol 2017; 50: 745-752
  • 31 Schlatterer SD, Sanapo L, du Plessis AJ. et al. The Role of Fetal MRI for Suspected Anomalies of the Posterior Fossa. Pediatr Neurol 2021; 117: 10-18
  • 32 Miller E, Orman G, Huisman TAGM. Fetal MRI assessment of posterior fossa anomalies: A review. J Neuroimaging 2021; 31: 620-640
  • 33 Dovjak GO, Diogo MC, Brugger PC. et al. Quantitative fetal magnetic resonance imaging assessment of cystic posterior fossa malformations. Ultrasound Obstet Gynecol 2020; 56: 78-85
  • 34 Salsi G, Volpe G, Montaguti E. et al. Isolated Upward Rotation of the Fetal Cerebellar Vermis (Blake's Pouch Cyst) Is a Normal Variant: An Analysis of 111 Cases. Fetal Diagn Ther 2021; 48: 485-492
  • 35 D'Antonio F, Khalil A, Garel C. et al. Systematic review and meta-analysis of isolated posterior fossa malformations on prenatal imaging (part 2): neurodevelopmental outcome. Ultrasound Obstet Gynecol 2016; 48: 28-37
  • 36 Haratz KK, Lerman-Sagie T. Prenatal diagnosis of brainstem anomalies. Eur J Paediatr Neurol 2018; 22: 1016-1026
  • 37 Accogli A, Addour-Boudrahem N, Srour M. Diagnostic Approach to Cerebellar Hypoplasia. Cerebellum 2021; 20: 631-658
  • 38 Haratz KK, Shulevitz SL, Leibovitz Z. et al. Fourth ventricle index: sonographic marker for severe fetal vermian dysgenesis/agenesis. Ultrasound Obstet Gynecol 2019; 53: 390-395
  • 39 Schneider J, Mohr N, Aliatakis N. et al. Brain malformations and cognitive performance in spina bifida. Dev Med Child Neurol 2021; 63: 295-302
  • 40 Vonzun L, Kahr MK, Wille D. et al. Determination of Anatomical Levels in Spina Bifida Fetuses with Ultrasound and MRI. Ultraschall Med 2022; 43: 181-185
  • 41 Deprest JA, Nicolaides KH, Benachi A. et al. TOTAL Trial for Severe Hypoplasia Investigators. Randomized Trial of Fetal Surgery for Severe Left Diaphragmatic Hernia. N Engl J Med 2021; 385: 107-118
  • 42 Amodeo I, Borzani I, Raffaeli G. et al. The role of magnetic resonance imaging in the diagnosis and prognostic evaluation of fetuses with congenital diaphragmatic hernia. Eur J Pediatr 2022; 181: 3243-3257
  • 43 Fratelli N, Prefumo F, Maggi C. et al. Third-trimester ultrasound for antenatal diagnosis of placenta accreta spectrum in women with placenta previa: results from the ADoPAD study. Ultrasound Obstet Gynecol 2022; 60: 381-389
  • 44 Familiari A, Liberati M, Lim P. et al. Diagnostic accuracy of magnetic resonance imaging in detecting the severity of abnormal invasive placenta: a systematic review and meta-analysis. Acta Obstet Gynecol Scand 2018; 97: 507