Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(20): 3191-3198
DOI: 10.1055/a-2359-8967
DOI: 10.1055/a-2359-8967
paper
Silver-Catalyzed Dearomative [3+2] Spiroannulation of Aryl Oxamic Acids with Alkynes
We are grateful for the financial support from the National Natural Science Foundation of China (22371255, 22371254, and 22071217), Natural Science Foundation of Zhejiang Province (LY22B020008, LZ23B020006), and the Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-B2023003).
Abstract
A silver-catalyzed dearomative decarboxylative [3+2] spiroannulation of aryl oxamic acids with alkynes is described. The reaction provides reliable access to a range of azaspiro[4,5]trienones in moderate yields in aqueous media. In addition, the reaction exhibits a broad substrate scope and good functional group compatibility.
Key words
silver-catalyzed - dearomative - [3+2] spiroannulation - oxamic acid - alkyne - azaspiro[4,5]trienoneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2359-8967.
- Supporting Information
Publication History
Received: 03 June 2024
Accepted after revision: 03 July 2024
Accepted Manuscript online:
03 July 2024
Article published online:
24 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Wardrop DJ, Basak A. Org. Lett. 2001; 3: 1053
- 1b Archana S, Geesala R, Rao NB, Satpati S, Puroshottam G, Panasa A, Dixit A, Das A, Srivastava AK. Bioorg. Med. Chem. Lett. 2015; 25: 680
- 1c Yugandhar D, Nayak VL, Archana S, Shekar KC, Srivastava AK. Eur. J. Med. Chem. 2015; 101: 348
- 1d Ghoshal A, Kumar A, Yugandhar D, Sona C, Kuriakose S, Nagesh K, Rashid M, Singh SK, Wahajuddin M, Yadav PN, Srivastava AK. Eur. J. Med. Chem. 2018; 152: 148
- 2a Wipf P, Kim Y, Fritch PC. J. Org. Chem. 1993; 58: 7195
- 2b Wipf P, Spencer SR. J. Am. Chem. Soc. 2005; 127: 225
- 2c Leon R, Jawalekar A, Redert T, Gaunt MJ. Chem. Sci. 2011; 2: 1487
- 2d Jia M.-Q, You S.-L. Chem. Commun. 2012; 48: 6363
- 3a Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608
- 3b Wu L.-J, Tan F.-L, Li M, Song R.-J, Li J.-H. Org. Chem. Front. 2017; 4: 350
- 3c Wang CS, Roisnel T, Dixneuf PH, Soulé JF. Adv. Synth. Catal. 2018; 361: 445
- 3d Liu Y, Wang Q.-L, Chen Z, Zhou Q, Xiong B.-Q, Zhang P.-L, Tang K.-W. Chem. Commun. 2019; 55: 12212
- 3e Manna S, Someswara Ashwathappa PK, Prabhu KR. Chem. Commun. 2020; 56: 13165
- 3f Nair AM, Shinde AH, Kumar S, Volla CM. R. Chem. Commun. 2020; 56: 12367
- 3g Reddy CR, Kolgave DH, Subbarao M, Aila M, Prajapti SK. Org. Lett. 2020; 22: 5342
- 3h Zeng F.-L, Chen X.-L, Sun K, Zhu H.-L, Yuan X.-Y, Liu Y, Qu L.-B, Zhao Y.-F, Yu B. Org. Chem. Front. 2021; 8: 760
- 3i Chen P, Fan J.-H, Yu W.-Q, Xiong B.-Q, Liu Y, Tang K.-W, Xie J. J. Org. Chem. 2022; 87: 5643
- 3j Wei G, Zhang J, Wang H, Chen Z, Wu X.-F. Org. Biomol. Chem. 2023; 21: 284
- 4a Godoi B, Schumacher RF, Zeni G. Chem. Rev. 2011; 111: 2937
- 4b Zhang X, Larock RC. J. Am. Chem. Soc. 2005; 127: 12230
- 4c Yugandhar D, Srivastava AK. ACS Comb. Sci. 2015; 17: 474
- 4d Qiao Z, Shao C, Gao Y, Liang K, Yin H, Chen F.-X. Tetrahedron Lett. 2022; 100: 153875
- 4e Wang J, Lu X.-X, Yang R.-P, Xiang Z.-H, Zhang B.-B, Chao S, Liu L, Yan Y, Shang X. J. Org. Chem. 2022; 87: 13089
- 5a Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
- 5b Sun W, Li G, Hong L, Wang R. Org. Biomol. Chem. 2016; 14: 2164
- 5c Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
- 5d Zheng C, You S.-L. Chem 2016; 1: 830
- 5e Ganguly S, Bhakta S, Ghosh T. ChemistrySelect 2022; 7: e202201407
- 5f Buttard F, Guinchard X. ACS Catal. 2023; 13: 9442
- 5g Yang Y, Jiang K, Zeng G, Yin B. Adv. Synth. Catal. 2023; 365: 270
- 6a Nan J, Zuo Z, Luo L, Bai L, Zheng H, Yuan Y, Liu J, Luan X, Wang Y. J. Am. Chem. Soc. 2013; 135: 17306
- 6b Kujawa S, Best D, Burns DJ, Lam HW. Chem. Eur. J. 2014; 20: 8599
- 6c Seoane A, Casanova N, Quiñones N, Mascareñas JL, Gulías M. J. Am. Chem. Soc. 2014; 136: 7607
- 6d Yang L, Zheng H, Luo L, Nan J, Liu J, Wang Y, Luan X. J. Am. Chem. Soc. 2015; 137: 4876
- 6e Zheng H, Bai L, Liu J, Nan J, Zuo Z, Yang L, Wang Y, Luan X. Chem. Commun. 2015; 51: 3061
- 6f Zheng J, Wang S.-B, Zheng C, You S.-L. J. Am. Chem. Soc. 2015; 137: 4880
- 6g Zuo Z, Yang X, Liu J, Nan J, Bai L, Wang Y, Luan X. J. Org. Chem. 2015; 80: 3349
- 6h Han L, Wang H, Luan X. Org. Chem. Front. 2018; 5: 2453
- 6i Zuo Z, Wang H, Diao Y, Ge Y, Liu J, Luan X. ACS Catal. 2018; 8: 11029
- 6j Lin P.-P, Han X.-L, Ye G.-H, Li J.-L, Li Q, Wang H. J. Org. Chem. 2019; 84: 12966
- 6k Hao J, Ge Y, Yang L, Wang J, Luan X. Tetrahedron Lett. 2021; 71: 153050
- 6l Wei W, Scheremetjew A, Ackermann L. Chem. Sci. 2022; 13: 2783
- 7a Chu H, Cheng J, Yang J, Guo Y.-L, Zhang J. Angew. Chem. Int. Ed. 2020; 59: 21991
- 7b Lou S.-J, Luo G, Yamaguchi S, An K, Nishiura M, Hou Z. J. Am. Chem. Soc. 2021; 143: 20462
- 7c Xiao J.-A, Peng H, Zhang H, Meng R.-F, Lin C, Su W, Huang Y. Org. Lett. 2022; 24: 8709
- 7d Yang P, Wang Q, Cui B.-H, Zhang X.-D, Liu H, Zhang Y.-Y, Liu J.-L, Huang W.-Y, Liang R.-X, Jia Y.-X. J. Am. Chem. Soc. 2022; 144: 1087
- 7e Gao D, Jiao L. Angew. Chem. Int. Ed. 2022; 61: e202116024
- 7f Li C, Zhao B, Mao G, Deng G.-J. Chem. Commun. 2023; 59: 7044
- 8a Zuo Z, Wang H, Diao Y, Ge Y, Liu J, Luan X. ACS Catal. 2018; 8: 11029
- 8b Liao X, Wang D, Huang Y, Yang Y, You J. Org. Lett. 2019; 21: 1152
- 8c Zhou B, Wang H, Cao Z.-Y, Zhu J.-W, Liang R.-X, Hong X, Jia Y.-X. Nat. Commun. 2020; 11: 4380
- 8d Liao X, Zhou F, Bin Z, Yang Y, You J. Org. Lett. 2021; 23: 5203
- 8e Zhao Q.-Q, Rehbein J, Reiser O. Green Chem. 2022; 24: 2772
- 8f Zhou F, Shi W, Liao X, Yang Y, Yu Z.-X, You J. ACS Catal. 2021; 12: 676
- 9a Fan H, Pan P, Zhang Y, Wang W. Org. Lett. 2018; 20: 7929
- 9b Westwood MT, Lamb CJ. C, Sutherland DR, Lee A.-L. Org. Lett. 2019; 21: 7119
- 9c Lai XL, Shu XM, Song J, Xu HC. Angew. Chem. Int. Ed. 2020; 59: 10626
- 9d Ogbu IM, Lusseau J, Kurtay G, Robert F, Landais Y. Chem. Commun. 2020; 56: 12226
- 9e Yuan J.-W, Zhu J.-L, Zhu H.-L, Peng F, Yang L.-Y, Mao P, Zhang S.-R, Li Y.-C, Qu L.-B. Org. Chem. Front. 2020; 7: 273
- 9f Han Q.-Q, Sun Y.-Y, Yang S.-H, Song J.-C, Wang Z.-L. Chin. Chem. Lett. 2021; 32: 3632
- 9g Mazodze CM, Petersen WF. Org. Biomol. Chem. 2022; 20: 3469
- 9h Ogbu IM, Kurtay G, Robert F, Landais Y. Chem. Commun. 2022; 58: 7593
- 9i Hutskalova V, Bou Hamdan F, Sparr C. Org. Lett. 2023; 26: 2768
- 9j Kitcatt DM, Scott KA, Rongione E, Nicolle S, Lee A.-L. Chem. Sci. 2023; 14: 9806
- 9k Shiozuka A, Wu D, Kawashima K, Mori T, Sekine K, Kuninobu Y. ACS Catal. 2024; 14: 5972
- 10a Huang H, Zhang G, Chen Y. Angew. Chem. Int. Ed. 2015; 54: 7872
- 10b Wang H, Guo LN, Wang S, Duan X.-H. Org. Lett. 2015; 17: 3054
- 11a Bai Q.-F, Jin C, He J.-Y, Feng G. Org. Lett. 2018; 20: 2172
- 11b Chen G, Li C, Peng J, Yuan Z, Liu P, Liu X. Org. Biomol. Chem. 2019; 17: 8527
- 11c Feng G, Jin C, He J.-Y, Bai Q.-F. Synlett 2020; 31: 1517
- 12a Shen C, Liu R.-R, Fan R.-J, Li Y.-L, Xu T.-F, Gao J.-R, Jia Y.-X. J. Am. Chem. Soc. 2015; 137: 4936
- 12b Liu R.-R, Xu Y, Liang R.-X, Xiang B, Xie H.-J, Gao J.-R, Jia Y.-X. Org. Biomol. Chem. 2017; 15: 2711
- 12c Liu RR, Wang YG, Li YL, Huang BB, Liang RX, Jia YX. Angew. Chem. Int. Ed. 2017; 56: 7475
- 12d Weng J.-Q, Xing L.-L, Hou W.-R, Liang R.-X, Jia Y.-X. Org. Chem. Front. 2019; 6: 1577
- 12e Liang RX, Song LJ, Lu JB, Xu WY, Ding C, Jia YX. Angew. Chem. Int. Ed. 2021; 60: 7412
- 12f Liang R.-X, Chen J.-F, Huang Y.-Y, Yu Y.-P, Zhang H.-Y, Song Y.-F, Tsui GC, Jia Y.-X. Chem. Commun. 2022; 58: 6200
- 12g Liang R.-X, Jia Y.-X. Acc. Chem. Res. 2022; 55: 734
- 12h Hu Y.-Y, Xu X.-Q, Deng W.-C, Liang R.-X, Jia Y.-X. Org. Lett. 2023; 25: 6122
- 13 Liu Y, Wang Q.-L, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Yang C.-a, Tang K.-W. J. Org. Chem. 2018; 83: 2210
For selected examples:
For a review:
For selected examples:
For selected reviews:
For selected examples: