Subscribe to RSS
DOI: 10.1055/a-2360-8289
Palladium-Catalyzed Asymmetric Allylic Alkylation of Azlactones: An Efficient Access to Unsaturated Trifluoromethylated α-Amino Acid Derivatives Possessing α-Quaternary Stereogenic Centers
Financial support for this work was provided by the National Natural Science Foundation of China (Grant Nos. 21878037, 22278060).
Abstract
A new strategy for the asymmetric allylic alkylation of azlactones with α-(trifluoromethyl)allyl acetates catalyzed by Pd(OAc)2/(R)-BINAP is designed and developed, providing access to unsaturated α-quaternary α-amino acid derivatives bearing a trifluoromethyl group and contiguous quaternary and tertiary stereogenic centers. The products are obtained in good yields with exclusive regioselectivity and excellent stereoselective control under relatively mild reaction conditions. A scale-up experiment shows no loss of reactivity or stereoselectivity. The synthetic utility of the current strategy is demonstrated through transformations of a representative product to afford several potentially bioactive species.
Key words
palladium catalysis - trifluoromethyl alkylation - asymmetric catalysis - azlactones - α-(trifluoromethyl)allyl acetatesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2360-8289.
- Supporting Information
Publication History
Received: 10 June 2024
Accepted after revision: 04 July 2024
Accepted Manuscript online:
04 July 2024
Article published online:
29 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Lee JH, Lee S.-g. Chem. Sci. 2013; 4: 2922
- 1b Bucci R, Giofré S, Clerici F, Contini A, Pinto A, Erba E, Soave R, Pellegrino S, Gelmi ML. J. Org. Chem. 2018; 83: 11493
- 1c De Marco R, Zhao J, Greco A, Ioannone S, Gentilucci L. J. Org. Chem. 2019; 84: 4992
- 1d Kobayashi M, Onozawa N, Matsuda K, Wakimoto T. Commun. Chem. 2024; 7: 67
- 2a Ohfune Y, Shinada T. Eur. J. Org. Chem. 2005; 5127
- 2b Tanaka M. Chem. Pharm. Bull. 2007; 55: 349
- 2c Metz AE, Kozlowski MC. J. Org. Chem. 2015; 80: 1
- 2d Appavoo SD, Huh S, Diaz DB, Yudin AK. Chem. Rev. 2019; 119: 9724
- 2e Polinelli S, Broxterman QB, Schoemaker HE, Boesten WH. J, Crisma M, Valle G, Toniolo C, Kamphuis J. Bioorg. Med. Chem. Lett. 1992; 2: 453
- 2f Toniolo C, Crisma M, Formaggio F, Peggion C. Biopolymers 2001; 60: 396
- 2g Wu HM, Zhang Z, Xiao F, Wei L, Dong XQ, Wang CJ. Org. Lett. 2020; 22: 4852
- 2h Lu B, Liang X, Zhang J, Wang Z, Peng Q, Wang X. J. Am. Chem. Soc. 2021; 143: 11799
- 2i Talbot FJ. T, Zhang S, Satpathi B, Howell GP, Perry GJ. P, Crisenza GE. M, Procter DJ. ACS Catal. 2021; 11: 14448
- 2j Torregrosa-Chinillach A, Carral-Menoyo A, Gomez-Bengoa E, Chinchilla R. J. Org. Chem. 2022; 87: 14507
- 2k Babawale F, Murugesan K, Narobe R, König B. Org. Lett. 2022; 24: 4793
- 3a For an example, see: Fustero S, Sanchez-Rosello M, Baez C, Del Pozo C, Garcia Ruano JL, Aleman J, Marzo L, Parra A. Amino Acids 2011; 41: 559
- 3b Venkatraman J, Shankaramma SC, Balaram P. Chem. Rev. 2001; 101: 3131
- 3c Najera C, Sansano JM. Chem. Rev. 2007; 107: 4584
- 3d Vogt H, Brase S. Org. Biomol. Chem. 2007; 5: 406
- 3e Arrayas RG, Carretero JC. Chem. Soc. Rev. 2009; 38: 1940
- 3f Liu WX, Wang R. Med. Res. Rev. 2011; 32: 536
- 3g Bera K, Namboothiri IN. N. Asian J. Org. Chem. 2014; 3: 1234
- 3h Noisier AF, Brimble MA. Chem. Rev. 2014; 114: 8775
- 3i Boibessot T, Benimelis D, Meffre P, Benfodda Z. Amino Acids 2016; 48: 2081
- 4a Fisk JS, Mosey RA, Tepe JJ. Chem. Soc. Rev. 2007; 36: 1432
- 4b de Castro PP, Carpanez AG, Amarante GW. Chem. Eur. J. 2016; 22: 10294
- 4c Yu X.-Y, Zhou F, Xiao W.-J, Chen J.-R. Curr. Catal. 2017; 6: 155
- 4d Marra IF. S, de Castro PP, Amarante GW. Eur. J. Org. Chem. 2019; 5830
- 4e Trost BM, Ariza X. J. Am. Chem. Soc. 1999; 121: 10727
- 4f Ruan S, Lin X, Xie L, Lin L, Feng X, Liu X. Org. Chem. Front. 2018; 5: 32
- 4g Zhang Z, Xiao F, Wu H.-M, Dong X.-Q, Wang C.-J. Org. Lett. 2020; 22: 569
- 4h Cheng X, Shen C, Dong X.-Q, Wang C.-J. Chem. Commun. 2022; 58: 3142
- 4i Zhou S.-S, Sun X.-Y, Liu W.-K, Song J.-Y, Wang Z, Qi Z.-H, Wang X.-W. J. Org. Chem. 2023; 88: 11867
- 5a Ooi T, Uraguchi D, Asai Y, Seto Y. Synlett 2009; 658
- 5b Uraguchi D, Asai Y, Ooi T. Angew. Chem. Int. Ed. 2009; 48: 733
- 5c Alba AN. R, Calbet T, Font-Bardía M, Moyano A, Rios R. Eur. J. Org. Chem. 2011; 2053
- 5d Tarí S, Avila A, Chinchilla R, Nájera C. Tetrahedron: Asymmetry 2012; 23: 176
- 5e Jeong B.-S, Lee Y.-J, Seo J, Kim D.-G, Park H.-g. Synlett 2013; 24: 701
- 5f Yan J, Chen M, Sung HH, Williams ID, Sun J. Chem. Asian J. 2018; 13: 2440
- 6a Cabrera S, Reyes E, Aleman J, Milelli A, Kobbelgaard S, Jorgensen KA. J. Am. Chem. Soc. 2008; 130: 12031
- 6b Balaguer AN, Companyó X, Calvet T, Font-Bardía M, Moyano A, Rios R. Eur. J. Org. Chem. 2009; 199
- 6c Hayashi Y, Obi K, Ohta Y, Okamura D, Ishikawa H. Chem. Asian J. 2009; 4: 246
- 6d Uraguchi D, Ueki Y, Ooi T. Science 2009; 326: 120
- 6e Uraguchi D, Ueki Y, Sugiyama A, Ooi T. Chem. Sci. 2013; 4: 1308
- 6f Liu Q, Qiao B, Chin KF, Tan CH, Jiang Z. Adv. Synth. Catal. 2014; 356: 3777
- 7a Uraguchi D, Ueki Y, Ooi T. J. Am. Chem. Soc. 2008; 130: 14088
- 7b Liu X, Deng L, Jiang X, Yan W, Liu C, Wang R. Org. Lett. 2010; 12: 876
- 8a Melhado AD, Luparia M, Toste FD. J. Am. Chem. Soc. 2007; 129: 12638
- 8b Dong S, Liu X, Chen X, Mei F, Zhang Y, Gao B, Lin L, Feng X. J. Am. Chem. Soc. 2010; 132: 10650
- 8c Ma C, Zhou JY, Zhang YZ, Mei GJ, Shi F. Angew. Chem. Int. Ed. 2018; 57: 5398
- 9a Kuwano R, Kondo Y. Org. Lett. 2004; 6: 3545
- 9b Trost BM, Czabaniuk LC. J. Am. Chem. Soc. 2012; 134: 5778
- 9c Trost BM, Czabaniuk LC. Chem. Eur. J. 2013; 19: 15210
- 10a Wang TC, Han ZY, Wang PS, Lin HC, Luo SW, Gong LZ. Org. Lett. 2018; 20: 4740
- 10b Lin HC, Xie PP, Dai ZY, Zhang SQ, Wang PS, Chen YG, Wang TC, Hong X, Gong LZ. J. Am. Chem. Soc. 2019; 141: 5824
- 10c Yang H, Xing D. Chem. Commun. 2020; 56: 3721
- 10d Zhang W.-N, Hu Y.-C, Liu Y, Wang X.-Y, Zhao Y.-Y, Chen Q.-A. Cell Rep. Phys. Sci. 2024; 5: 101908
- 11a Trost BM, Heinemann C, Ariza X, Weigand S. J. Am. Chem. Soc. 1999; 121: 8667
- 11b Trost BM, Ariza X. J. Am. Chem. Soc. 1999; 121: 10727
- 11c Trost BM, Dogra K. J. Am. Chem. Soc. 2002; 124: 7256
- 11d Trost BM, Ariza X. Angew. Chem. Int. Ed. 2003; 36: 2635
- 11e Kawatsura M, Tsuji H, Uchida K, Itoh T. Tetrahedron 2011; 67: 7686
- 11f Chen W, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 2068
- 11g Chen W, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 377
- 11h Zhou H, Yang H, Liu M, Xia C, Jiang G. Org. Lett. 2014; 16: 5350
- 11i Wei X, Liu D, An Q, Zhang W. Org. Lett. 2015; 17: 5768
- 11j Bai XD, Zhang QF, He Y. Chem. Commun. 2019; 55: 5547
- 11k Zhou H, Yang H, Yin H, Liu M, Xia C, Jiang G. RSC Adv. 2014; 4: 25596
- 12a Bohm HJ, Banner D, Bendels S, Kansy M, Kuhn B, Muller K, Obst-Sander U, Stahl M. ChemBioChem 2004; 5: 637
- 12b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 12c Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 13 For a review, see: Jeschke P. ChemBioChem 2004; 5: 570
- 14 For a review, see: Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
- 15a Qiu X.-L, Meng W.-D, Qing F.-L. Tetrahedron 2004; 60: 6711
- 15b Ulrich AS. Prog. Nucl. Magn. Reson. Spectrosc. 2005; 46: 1
- 15c Smits R, Cadicamo CD, Burger K, Koksch B. Chem. Soc. Rev. 2008; 37: 1727
- 15d Kitevski-LeBlanc JL, Prosser RS. Prog. Nucl. Magn. Reson. Spectrosc. 2012; 62: 1
- 15e Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B. Chem. Rev. 2019; 119: 10718
- 15f Zhu CL, Yang LJ, Li S, Zheng Y, Ma JA. Org. Lett. 2015; 17: 3442
- 15g Philippova AN, Vorobyeva DV, Monnier F, Osipov SN. Org. Biomol. Chem. 2020; 18: 3274
- 16a Zhao Y, Zhou Y, Liu J, Yang D, Tao L, Liu Y, Dong X, Liu J, Qu J. J. Org. Chem. 2016; 81: 4797
- 16b Zhao Y, Zhou Y, Zhang C, Wang H, Zhao J, Jin K, Liu J, Liu J, Qu J. Org. Biomol. Chem. 2017; 15: 5693
- 16c Li D, Zhou Y, Zhao Y, Zhang C, Li J, Zhao J, Qu J. J. Fluorine Chem. 2018; 212: 122
- 16d Zhao Y, Zhou Y, Zhang C, Li D, Sun P, Li J, Wang H, Liu J, Qu J. J. Org. Chem. 2018; 83: 2858
- 16e Zhou Y, Zhang C, Zhao Y, Li D, Zhao J, Wang Z, Qu J. Eur. J. Org. Chem. 2018; 6217
- 16f Li D, Lv S, Qu J, Zhou Y. Synthesis 2020; 52: 1203
- 16g Zhang C, Li D, Zhao Y, Zhao J, Qu J, Zhou Y. ChemistrySelect 2020; 5: 13099
- 16h Li D, Zhang W, Zhang S, Sun W, Zhao J, Wang B, Qu J, Zhou Y. Org. Lett. 2021; 23: 5804
- 16i Li D, Zhang S, Wang B, Sun W, Zhao J, Qu J, Zhou Y. Org. Chem. Front. 2022; 9: 810
- 16j Zhang S, Li D, Wang B, Sun W, Ma H, Di K, Sun L, Zhao J, Qu J, Zhou Y. Eur. J. Org. Chem. 2023; 26: e202300593
- 16k Cai N, Gao X, Yang L, Li W, Sun W, Zhang S, Zhao J, Qu J, Zhou Y. Eur. J. Med. Chem. 2024; 267: 116176
- 16l Cai N, Gao X, Li W, Yang L, Zhao J, Qu J, Zhou Y. Bioorg. Chem. 2024; 148: 107453
- 17a Kawatsura M, Terasaki S, Minakawa M, Hirakawa T, Ikeda K, Itoh T. Org. Lett. 2014; 16: 2442
- 17b Zhou M, Zhang J, Zhang X.-G, Zhang X. Org. Lett. 2019; 21: 671
- 18 Sicignano M, Rodríguez RI, Capaccio V, Borello F, Cano R, De Riccardis F, Bernardi L, Díaz-Tendero S, Della Sala G, Alemán J. Org. Biomol. Chem. 2020; 18: 2914
For reviews, see:
For some examples, see:
For reviews, see:
For reviews, see:
For some examples, see:
For reviews, see:
For reviews, see:
For some examples, see: