RSS-Feed abonnieren
DOI: 10.1055/a-2361-0069
Efficient Oxidation with Singlet Oxygen from 5,10,15,20-Tetraphenylporphyrin under Blue LED Irradiation and Air Atmosphere: Simplified Preparation of Key Building Blocks for Natural Product Synthesis
This work was supported by Grant-in-Aid for Scientific Research (Grant Number 20H02867) from the Japanese Society for the Promotion of Science (JSPS), the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan; by a grant from the Naito Foundation; by a grant from the Yamada Science Foundation; and by a grant from the Research Grant of Institute of Natural Science at Nihon University for 2023.

Abstract
A method for preparing important building blocks for natural product synthesis has been developed using singlet oxygen generated from 5,10,15,20-tetraphenylporphyrin under blue LED irradiation. Using this method, the allylic oxidation of dicyclopentadiene proceeded smoothly in air atmosphere with an 87% yield. The conditions, using TPP under blue LED irradiation, were expanded to include the oxidation of cyclopentadiene. The approach offers a simple and cost-effective method of synthesizing important building blocks for natural product synthesis.
Key words
5,10,15,20-tetraphenylporphyrin - blue LED - air atmosphere - singlet oxygen - dicyclopentadiene - cyclopentadieneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2361-0069.
- Supporting Information
Publikationsverlauf
Eingereicht: 25. Juni 2024
Angenommen nach Revision: 05. Juli 2024
Accepted Manuscript online:
05. Juli 2024
Artikel online veröffentlicht:
22. Juli 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Mihelich ED, Eickhoff DJ. J. Org. Chem. 1983; 48: 4135
- 2a Borsato G, Lucchi OD, Fabris F, Lucchini V, Frascella P, Zambon A. Tetrahedron Lett. 2003; 44: 3517
- 2b Kärki K, Siitonen JH, Kortet S, Cederström M, Pihko PM. Synlett 2018; 29: 1723
- 3 Li J, Stoltz BM, Grubbs RH. Org. Lett. 2019; 21: 10139
- 4a Tanaka K, Ogasawara K. Synthesis 1995; 1237
- 4b Takano S, Sato T, Inomata K, Ogasawara K. J. Chem. Soc., Chem. Commun. 1991; 462
- 5a Hayakawa I, Niida K, Kigoshi H. Chem. Commun. 2015; 51: 11568
- 5b Hayakawa I, Nagayasu A, Sakakura A. J. Org. Chem. 2019; 84: 15614
- 6a Kaneko C, Sugimoto A, Tanaka S. Synthesis 1974; 876
- 6b Inoue Y, Wada K, Liu Y, Ouchi M, Tai A, Hakushi T. J. Org. Chem. 1989; 54: 5268
- 6c Busato S, Tinembart O, Zhang Z.-d, Scheffold R. Tetrahedron 1990; 46: 3155
- 6d Dols PP. M. A, Klunder AJ. H, Zwanenburg B. Tetrahedron 1994; 50: 8515
- 6e Chen Z, Halterman RL. Organometallics 1994; 13: 3932
- 6f Menard F, Perez D, Roman DS, Chapman TM, Lautens M. J. Org. Chem. 2010; 75: 4056
- 6g Putta S, Reddy AM, Sheelu G, Reddy SB. V, Kumaraguru T. Tetrahedron 2018; 74: 6673
- 6h Jacques R, Pullin RD. C, Fletcher SP. Nat. Commun. 2019; 10: 21
- 6i Kimbrough JR, Jana S, Kim K, Allweil A, Oates JA, Milne GL, Sulikowski GA. Tetrahedron Lett. 2020; 61: 151922
- 6j Herrero-Gomez E, van der Loo CH. M, Huck L, Rioz-Martínez A, Keene NF, Li B, Pouwer K, Allais C. Org. Process Res. Dev. 2020; 24: 2304
- 7 Wu L, Abada Z, Lee DS, Poliakoff M, George MW. Tetrahedron 2018; 74: 3107
- 8a Zhang D, Wu L.-Z, Yang Q.-Z, Li X.-H, Zhang L.-P, Tung C.-H. Org. Lett. 2003; 5: 3221
- 8b Feng K, Zhang R.-Y, Wu L.-Z, Tu B, Peng M.-L, Zhang L.-P, Zhao D, Tung C.-H. J. Am. Chem. Soc. 2006; 128: 14685
- 8c Feng K, Wu L.-Z, Zhang L.-P, Tung C.-H. Tetrahedron 2007; 63: 4907
- 8d Feng K, Peng M.-L, Wang D.-H, Zhang L.-P, Tung C.-H, Wu L.-Z. Dalton Trans. 2009; 9794
- 9a Deardorff DR, Windham CQ, Craney CL. Org. Synth. 1996; 73: 25
- 9b Paquette LA, Earle MJ, Smith GF. Org. Synth. 1996; 73: 36
- 10 Knight SD, Overman LE, Pairaudeau G. J. Am. Chem. Soc. 1993; 115: 9293
- 11 Stork G, Sher PM, Chen H.-L. J. Am. Chem. Soc. 1986; 108: 6384
- 12 Saito F, Takeuchi R, Kamino T, Kuramochi K, Sugawara F, Sakaguchi K, Kobayashi S. Bioorg. Med. Chem. Lett. 2004; 14: 1975
- 13 Shiogai A, Toma T, Yokoshima S. Synlett 2020; 31: 290
- 14 Kuga T, Sasano Y, Iwabüchi Y. Chem. Commun. 2018; 54: 798
- 15 Winter N, Rupcic Z, Stadler M, Trauner D. J. Antibiot. 2019; 72: 375
- 16 Godwin B, Anvari MH, Olfatbakhsh T, Mahbod M, Milani AS, DiLabio GA, Wulff JE. Macromolecules 2023; 56: 1592
- 17a Zhou X, Li W, Zhou R, Wu X, Huang Y, Hou W, Li C, Zhang Y, Nie W, Wang Y, Song H, Liu X.-Y, Zheng Z, Xie F, Li S, Zhong W, Qin Y. CCS Chem. 2021; 3: 1376
- 17b Yin H, Wang C.-J, Zhao Y.-G, He Z.-Y, Chu M.-M, Wang Y.-F, Xu D.-Q. Org. Biomol. Chem. 2021; 19: 6588
- 17c Leisering S, Ponath S, Shakeri K, Mavroskoufis A, Kleoff M, Voßnacker P, Steinhauer S, Weber M, Christmann M. Org. Lett. 2022; 24: 4305
- 17d Yuan P, Gaich T. Org. Lett. 2022; 24: 4717
- 18a Carson MC, Orzolek BJ, Kozlowski MC. Org. Lett. 2022; 24: 7250
- 18b Tsutsumi T, Yamagami R, Hayakawa I. J. Org. Chem. 2024; 89: 8931
- 19 Yamaguchi M, Shioya K, Li C, Yonesato K, Murata K, Ishii K, Yamaguchi K, Suzuki K. J. Am. Chem. Soc. 2024; 146: 4549
- 20 The production of high-pressure sodium-vapor lamps and mercury lamps was discontinued in Japan, by manufacturers such as Panasonic and TOSHIBA.
For selected allylic oxidation of dicyclopentadiene (1) using singlet oxygen, see:
For selected oxidation of cyclopentadiene (7) using rose bengal, see:
For specific instances demonstrating the generation of singlet oxygen using TPP and blue- or green-LED irradiation, see: