Subscribe to RSS
DOI: 10.1055/a-2364-6119
Phosphazene-Catalyzed Cascade Esterification/Stereoselective Aza-Michael Addition of Chiral β-Trifluoromethyl-α,β-unsaturated N-Acylated Oxazolidin-2-ones
This project is funded by National Research Council of Thailand (NRCT) and Mahidol University (N42A650346). A student scholarship to S.R. from the Science Achievement Scholarship of Thailand (SAST) is gratefully acknowledged.
![](https://www.thieme-connect.de/media/synlett/202504/lookinside/thumbnails/st-2024-d0185-l_10-1055_a-2364-6119-1.jpg)
Abstract
Upon treatment of chiral β-trifluoromethyl-α,β-unsaturated N-acylated oxazolidin-2-ones with a range of alcohols using phosphazene base as a catalyst, the unexpected cascade esterification/stereoselective aza-Michael addition was observed. The reactions proceeded with high diastereoselectivities (up to >99:1) to give a series of enantioenriched aza-Michael addition products in good to high yields. The structure and stereochemistry of the representative aza-Michael adduct were confirmed by X-ray crystal structure analysis. The plausible mechanism was proposed on the basis of the experimental results.The synthetic transformations of chiral aza-Michael addition products were also demonstrated highlighting the synthetic application of the present work.
Key words
aza-Michael addition - oxa-Michael addition - esterification - phosphazene - trifluoromethyl group - cascade reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2364-6119.
- Supporting Information
Publication History
Received: 12 June 2024
Accepted after revision: 16 July 2024
Accepted Manuscript online:
16 July 2024
Article published online:
05 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
- 2a Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 2b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 3a Besset T, Poisson T, Pannecoucke X. J. Fluorine Chem. 2015; 178: 225
- 3b Reznikov AN, Klimochkin YN. Synthesis 2020; 52: 781
- 3c Zheng K, Liu X, Feng X. Chem. Rev. 2018; 118: 7586
- 4 Chaudhary B, Kulkarni N, Saiyed N, Chaurasia M, Desai S, Potkule S, Sharma S. Adv. Synth. Catal. 2020; 362: 4794
- 5a Xu X, He Y, Zhou J, Li X, Zhu B, Chang J. J. Org. Chem. 2020; 85: 574
- 5b Morigaki A, Kawamura M, Arimitsu S, Ishihara T, Konno T. Asian J. Org. Chem. 2013; 2: 239
- 5c Sanz-Marco A, García-Ortiz A, Blay G, Pedro JR. Chem. Commun. 2014; 50: 2275
- 5d Morigaki A, Tanaka T, Miyabe T, Ishihara T, Konno T. Org. Biomol. Chem. 2013; 11: 586
- 6a Volonterio A, Bravo P, Moussier N, Zanda M. Tetrahedron Lett. 2000; 41: 6517
- 6b Volonterio A, Bravo P, Zanda M. Org. Lett. 2000; 2: 1827
- 6c Rulev AY, Tyumentsev IA. Adv. Synth. Catal. 2022; 364: 1622
- 6d Yang X, Chen Z, Cai Y, Huang Y.-Y, Shibata N. Green Chem. 2014; 16: 4530
- 6e Weiß M, Gröger H. Synlett 2009; 1251
- 6f Formicola L, Maréchal X, Basse N, Bouvier-Durand M, Bonnet-Delpon D, Milcent T, Reboud-Ravaux M, Ongeri S. Bioorg. Med. Chem. Lett. 2009; 19: 83
- 6g Volonterio A, Bravo P, Zanda M. Tetrahedron Lett. 2001; 42: 3141
- 6h Volonterio A, Bravo P, Zanda M. Org. Lett. 2000; 2: 1827
- 6i Volonterio A, Bellosta S, Bravo P, Canavesi M, Corradi E, Meille SV, Monetti M, Moussier N, Zanda M. Eur. J. Org. Chem. 2002; 428
- 6j Molteni M, Volonterio A, Fossati G, Lazzari P, Zanda M. Tetrahedron Lett. 2007; 48: 589
- 6k Molteni M, Volonterio A, Zanda M. Org. Lett. 2003; 5: 3887
- 6l Molteni M, Bellucci MC, Bigotti S, Mazzini S, Volonterio A, Zanda M. Org. Biomol. Chem. 2009; 7: 2286
- 6m Bigotti S, Meille SV, Volonterio A, Zanda M. J. Fluorine Chem. 2008; 129: 767
- 6n Bigotti S, Volonterio A, Zanda M. Synlett 2008; 958
- 7a Su Y, Ling J-B, Zhang S, Xu P.-F. J. Org. Chem. 2013; 78: 11053
- 7b Hu W.-F, Zhao J.-Q, Chen X.-Z, Zhou M.-Q, Zhang X.-M, Xu X.-Y, Yuan W.-C. Tetrahedron 2019; 75: 2206
- 7c Chen W, Jing Z, Chin KF, Qiao B, Zhao Y, Yan L, Tan C.-H, Jiang Z. Adv. Synth. Catal. 2014; 356: 1292
- 8 Jiang Q, Guo T, Yu Z. J. Org. Chem. 2017; 82: 1951
- 9 Shibatomi K, Narayama A, Abe Y, Iwasa S. Chem. Commun. 2012; 48: 7380
- 10 Ratner VG, Lork E, Pashkevich KI, Röschenthaler G.-V. J. Fluorine Chem. 2000; 102: 73
- 11 Racochote S, Pohmakotr M, Kuhakarn C, Leowanawat P, Reutrakul V, Soorukram D. Eur. J. Org. Chem. 2019; 2212
- 12 Racochote S, Naweephattana P, Surawatanawong P, Kuhakarn C, Leowanawat P, Reutrakul V, Soorukram D. Org. Biomol. Chem. 2023; 21: 7180
- 13a Ivanovs I, Bērziņa S, Lugiņina J, Belyakov S, Rjabovs V. Heterocycl. Commun. 2016; 22: 95
- 13b Adderley NJ, Buchanan DJ, Dixon DJ, Lainé DI. Angew. Chem. Int. Ed. 2003; 42: 4241
- 13c Nising CF, Bräse S. Chem. Soc. Rev. 2008; 37: 1218
- 13d Nising CF, Bräse S. Chem. Soc. Rev. 2012; 41: 988
- 13e Wang Y, Du D.-M. Org. Chem. Front. 2020; 7: 3266
- 13f Thiyagarajan S, Krishnakumar V, Gunanathan C. Chem. Asian J. 2020; 15: 518
- 13g Csókás D, Ho AX. Y, Ramabhadran RO, Bates RW. Org. Biomol. Chem. 2019; 17: 6293
- 14a Onyeagusi CI, Malcolmson SJ. ACS Catal. 2020; 10: 12507
- 14b Chen M.-W, Yang Q, Deng Z, Ding Q, Peng Y. J. Org. Chem. 2019; 84: 10371 ; see also ref. 6
- 15a Punirun T, Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M. Eur. J. Org. Chem. 2014; 4162
- 15b Phae-nok S, Kuhakarn C, Leowanawat P, Reutrakul V, Soorukram D. Synthesis 2024; 56: 1941
- 15c Luo C, Bandar JS. J. Am. Chem. Soc. 2018; 140: 3547
- 15d Kondoh A, Yamaguchi S, Watanabe Y, Terada M. Synlett 2022; 33: 1853
- 15e Kondoh A, Oishi M, Tezuka H, Terada M. Angew. Chem. Int. Ed. 2020; 59: 7472
- 15f Puleo TR, Sujansky SJ, Wright SE, Bandar JS. Chem. Eur. J. 2021; 27: 4216
- 15g Imahori T, Hori C, Kondo Y. Adv. Synth. Catal. 2004; 346: 1090
- 15h Kondoh A, Ando K, Terada M. Chem. Commun. 2013; 49: 10254
- 15i Kondoh A, Ma C, Terada M. Chem. Commun. 2020; 56: 10894
- 15j Kondoh A, Terada M. Chem. Eur. J. 2021; 27: 585
- 16 Schwesinger R, Schlemper H. Angew. Chem., Int. Ed. Engl. 1987; 26: 1167 ; Angew. Chem. 1987, 99, 1212
- 17 Tshepelevitsh S, Kütt A, Lõkov M, Kaljurand I, Saame J, Heering A, Plieger PG, Vianello R, Leito I. Eur. J. Org. Chem. 2019; 6735
- 18a Seebach D, Beck AK. Modern Synthetic Methods, Vol. 7. Ernst B, Leumann C. Wiley-VCH; Weinheim: 1995: 48
- 18b Mamdani HT, Hartley RC. Tetrahedron Lett. 2000; 41: 747
- 18c Fischer SM, Kaschnitz P, Slugovc C. Catal. Sci. Technol. 2022; 12: 6204
- 19a Lucet D, Toupet L, Gall TL, Mioskowski C. J. Org. Chem. 1997; 62: 2682
- 19b Sabelle S, Lucet D, Gall TL, Mioskowski C. Tetrahedron Lett. 1998; 39: 2111
- 19c Lucet D, Sabelle S, Kostelitz O, Gall TL, Mioskowski C. Eur. J. Org. Chem. 1999; 2583
- 19d Lucet D, Heyse P, Gissot A, Gall TL, Mioskowski C. Eur. J. Org. Chem. 2000; 3575
- 19e Feroci M, Inesi A, Palombi L, Rossi L. Tetrahedron: Asymmetry 2001; 12: 2331
- 19f Turconi J, Lebeau L, Paris J.-M, Mioskowski C. Tetrahedron 2006; 62: 8109
- 19g Shankar PS, Sani M, Terraneo G, Zanda M. Synlett 2009; 1341
- 19h Capra J, Gao B, Hemmery H, Thuéry P, Gall TL. ARKIVOC 2015; 60
- 20a Mayr H, Breugst M, Ofial AR. Angew. Chem. Int. Ed. 2011; 50: 6470
- 20b Endo A, Danishefsky SJ. J. Am. Chem. Soc. 2005; 127: 8298
- 21a Pal KB, Guo A, Das M, Báti G, Liu X.-W. ACS Catal. 2020; 10: 6707
- 21b Jardel D, Davies C, Peruch F, Massip S, Bibal B. Adv. Synth. Catal. 2016; 358: 1110
- 22 Cascade Esterification/Stereoselective aza-Michael Addition Reaction of 1aA flame-dried round-bottom flask equipped with a magnetic stirring bar, an argon inlet, and a rubber septum was charged with 1a (58.3 mg, 0.20 mmol), benzyl alcohol (2a, 24 μL, 0.22 mmol), and dry MeCN (1 mL). The resulting solution was cooled at 0 °C then P2-t-Bu solution (2.0 M in THF, 10 μL, 0.02 mmol) was added. After stirring at 0 °C for 6 h, the reaction mixture was quenched with 10% HCl solution (10 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with a saturated aqueous NaCl solution (30 mL), brine, and dried over anhydrous Na2SO4. After removal of the solvent in vacuo, the residue was purified by column chromatography (70% CH2Cl2 in hexanes) to afford (S,R)-3a (60.1 mg, 75% yield, dr 97:3, 19F NMR analysis) as a white solid.Compound (S,R)-3a: Rf = 0.30 (70% CH2Cl2 in hexanes); mp 85–87 °C (70% CH2Cl2 in hexanes); [α]D 23 –31.5 (c 1.1, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.43–7.31 (m, 8 H, ArH), 7.30–7.23 (m, 2 H, ArH), 5.15 (ABq, J = 12.1 Hz, 2 H, CHH), 4.75 (dd, J = 8.2, 8.2 Hz, 1 H, CHN), 4.50–4.38 (m, 2 H, CHHO, CH), 4.11 (dd, J = 7.6, 8.5 Hz, 1 H, CHHO), 3.21 (dd, J = 10.5, 16.6 Hz, 1 H, CHH), 2.86 (dd, J = 4.4, 16.6 Hz, 1 H, CHH). 13C NMR (100 MHz, CDCl3): δ = 168.6 (CO), 157.5 (CO), 136.4 (C), 135.2 (C), 129.6 (CH), 129.2 (2 × CH), 128.7 (2 × CH), 128.6 (CH), 128.5 (2 × CH), 127.7 (2 × CH), 124.4 (q, 1 JCF = 282.4 Hz, CF3), 70.5 (CH2), 67.3 (CH2), 59.9 (CH), 52.7 (q, 2 JCF = 32.2 Hz, CH), 30.4 (CH2). 19F NMR (376 MHz, CDCl3): δ = –72.4 (CF3). IR (ATR): λmax = 1757, 1496, 1479, 1361, 1243, 1184, 1124 cm–1. MS: m/z (%) relative intensity 394 [(M + H)+, 92], 286 (100), 216 (30), 91 (30). HRMS (ESI-TOF): m/z calcd for C20H18F3NO4Na+ [M + Na]+: 416.1080; found: 416.1082.
- 23 Katz SJ, Bergmeier SC. Tetrahedron Lett. 2002; 43: 557 ; see also ref. 19
- 24 Sun F, Van der Eycken EV, Feng H. Adv. Synth. Catal. 2021; 363: 5168
For oxa-Michael addition, see: