RSS-Feed abonnieren
DOI: 10.1055/a-2365-8054
18F-labelled gentiobiose as potential PET-radiotracer for specific bacterial imaging: precursor synthesis, radiolabelling and in vitro evaluation
18F-markierte Gentiobiose als potenzieller PET-Radiotracer für die spezifische Bildgebung bakterieller Infektionen: Precursorsynthese, Radiomarkierung und in vitro-Evaluation Gefördert durch: Deutsche Forschungsgemeinschaft Cells in Motion cluster of excellence, Collaborative Research Centre (CRC) 1450–4314608Abstract
Aim Bacterial infections are a clinical challenge, requiring fast and specific diagnosis to ensure effective treatment. Therefore, this project is dedicated to development of positron emission tomography (PET) radiotracers specifically targeting bacteria. Unlike previously developed bacteria-specific radiotracers, which are successful in detecting Gram-negative bacteria, tracers capable of imaging Gram-positive infections are still lacking.
Methods The disaccharide gentiobiose as abundant part of the cell wall of Gram-positive bacteria could fill this gap. Herein, the synthesis and evaluation of 2‘-deoxy-2‘-[18F]fluorogentiobiose ([18F]FLA280) is reported. The precursor for radiolabelling was obtained from a convergent synthesis under application of a benzylidene/benzyl group protecting strategy.
Results The first catalytic hydrogenation in 18F-radiochemistry is reported as proof of concept. The deprotection was carried out without any side product formation, giving the final radiotracer [18F]FLA280 in good radiochemical yield and excellent radiochemical purity. [18F]FLA280 was proven to be stable in murine and human blood serum for 120 minutes and was subjected to in vitro bacterial uptake studies towards S. aureus and E. coli resulting in a low bacterial uptake.
Conclusion The observed bacterial uptake indicates that [18F]FLA280 may be not a promising tracer candidate for in vivo translation and alternative candidates particularly for Gram-positive bacteria are required. However, further development on the concept of labelled carbohydrates and cell wall building blocks might be promising.
Publikationsverlauf
Eingereicht: 02. April 2024
Angenommen nach Revision: 12. Juli 2024
Artikel online veröffentlicht:
31. Juli 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Puetzler J, Hasselmann J, Nonhoff M. et al. On-Demand Release of Anti-Infective Silver from a Novel Implant Coating Using High-Energy Focused Shock Waves. Pharmaceutics 2023; 15
- 2 Vincent JL, Sakr Y, Singer M. et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 2020; 323: 1478-1487
- 3 Jamar F, Buscombe J, Chiti A. et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med 2013; 54: 647-658
- 4 Ordonez AA, Sellmyer MA, Gowrishankar G. et al. Molecular imaging of bacterial infections: Overcoming the barriers to clinical translation. Sci Transl Med 2019; 11 (508) eaax8251
- 5 Roll W, Faust A, Hermann S. et al. Infection Imaging: Focus on New Tracers?. J Nucl Med 2023; 64: 59S-67S
- 6 Kleynhans J, Sathekge MM, Ebenhan T. Preclinical Research Highlighting Contemporary Targeting Mechanisms of Radiolabeled Compounds for PET Based Infection Imaging. Sem Ncl Med 2023; 53: 630-643
- 7 Petrik M, Umlaufova E, Raclavsky V. et al. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur J Nucl Med Mol Imaging 2021; 48: 372-382
- 8 Margeta R, Schelhaas S, Hermann S. et al. A novel radiolabeled salmochelin derivative for bacteria-specific PET imaging: synthesis, radiolabelling and evaluation. Chem Commun 2024; 60: 3507-3510
- 9 Yao S, Xing H, Zhu W. et al. Infection Imaging With 18F-FDS and First-in-Human Evaluation. Nucl Med Biol 2016; 43: 206-214
- 10 Li J, Zheng H, Fodah R. et al. Validation of 2- 18 F-fluorodeoxysorbitol as a potential radiopharmaceutical for imaging bacterial infection in the lung. J Nucl Med 2018; 59: 134-139
- 11 Neumann KD, Villanueva-Meyer JE, Mutch CA. et al. Imaging active infection in vivo using D-amino acid derived PET radiotracers. Sci Rep 2017; 7: 7903
- 12 Polvoy I, Seo Y, Parker M. et al. Imaging joint infections using D-methyl-11C-methionine PET/MRI: initial experience in humans. Eur J Nucl Med Mol Imaging 2022; 49: 3761-3771
- 13 Sorlin AN, Lópes-Álvarez M, Rabbitt SJ. et al. Chemoenzymatic Syntheses of Fluorine-18-Labeled Disaccharides from [18F] FDG Yield Potent Sensors of Living Bacteria In Vivo. J Am Chem Soc 2023; 145: 17632-17642
- 14 Reichmann NT, Gründling A. Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. FEMS Microbiol Lett 2011; 319: 97-105
- 15 Ucar RA, Pérez-Díaz IM, Dean LL. Gentiobiose and cellobiose content in fresh and fermenting cucumbers and utilization of such disaccharides by lactic acid bacteria in fermented cucumber juice medium. Food Sci Nutr 2020; 8: 5798-5810
- 16 Palmer RE, Anderson RL. Metabolism of Gentiobiose in Aerobacter aerogenes. J Bacteriol 1972; 112: 1316-1320
- 17 Lipták A, Czégény I, Harangi J. et al. Hydrogenolysis of dioxolane-type benzylidene derivatives: a convenient pre- paration of methyl 2-O-benzyl- and 3-O-benzyl-4,6-O-benzylidene-a-D-manno- pyranoside. Carbohydr Res 1970; 73: 327-331
- 18 Lipták A, Fugedi P, Nánási P. Synthesis of Mono- and Di-benzyl Ethers of Benzyl a-L-Rhamnopyranoside. Carbohydr Res 1978; 65: 209-217
- 19 Lipták A, Imre J, Harangi J. et al. Chemo-, stereo- and regioselective hydrogenolysis of carbohydrate benzylidene acetals. Synthesis of benzyl ethers of benzyl α-d-, methyl β-D-mannopyranosides and benzyl α-D-rhamnopyranoside by ring cleavage of benzylidene derivatives with the LiAlH4-AlCl3. Tetrahedron 1982; 38: 3721-3727
- 20 Garegg PJ, Hultberg H, Wallin S. A novel, reductive ring-opening of carbohydrate benzylidene acetals. Carbohydr Res 1982; 108: 97-101
- 21 Cumpstey I, Butters TD, Tennant-Eyles RJ. et al. Synthesis of fluorescence-labelled disaccharide substrates of glucosidase II. Carbohydr Res 2003; 338: 1937-1949
- 22 Lipták A, Borbás A, Bajza I. Protecting Group Manipulations in Carbohydrate Synthesis. In: Kamerling H. Comprehensive Glycoscience: From Chemistry to Systems Biology. Elsevier; 2007: 203-259
- 23 Ohlin M, Johnsson R, Ellervik U. Regioselective reductive openings of 4,6-benzylidene acetals: synthetic and mechanistic aspects. Carbohydr Res 2011; 346: 1358-1370
- 24 Crich D, Sun S. Direct chemical synthesis of β-mannopyranosides and other glycosides via glycosyl triflates. Tetrahedron 1998; 54: 8321-8348
- 25 Luxen A, Satyamurthy N, Bida GT. et al. Stereospecific approach to the synthesis of [18F]2-deoxy-2-fluoro-d-mannose. Int J Radiat Appl Instrumentation Part A Appl Radiat Isot 1986; 37: 409-413
- 26 Axer A, Hermann S, Kehr G. et al. Harnessing the Maltodextrin Transport Mechanism for Targeted Bacterial Imaging: Structural Requirements for Improved in vivo Stability in Tracer Design. ChemMedChem 2018; 13: 241-250