RSS-Feed abonnieren
DOI: 10.1055/a-2367-1988
Synthesis and Aggregation-Induced Emission Properties of New Carbazole-Based Pyranones and their Ring-Transformed Derivatives
This work was supported by the Council of Scientific and Industrial Research, New Delhi under the project MLP2039. The authors acknowledge the University Grants Commission, Council of Scientific and Industrial Research (AcSIR), and the Department of Science and Technology (DST) for research fellowships.
This paper is dedicated to Prof. H. Ila on her 80th birthday for her significant contributions to the field of heterocyclic chemistry.
Abstract
A new series of N-phenyl-carbazole (N-phCbz) appended pyranones were designed and synthesized using α-oxo-ketene-S,S-acetal under mild reaction conditions in good yields. The reactivity of donor-acceptor (D-A)-based 2H-pyranones was utilized to develop their ring-transformed benzene-cored N-phenyl-carbazole derivatives. All the synthesized carbazole-based pyranones showed aggregation-induced emission (AIE) characteristics in 80–99% water fraction (f w) in DMSO. Among all the synthesized compounds, 6-(4-(9H-carbazol-9-yl)phenyl)-4-(methylthio)-2-oxo-2H-pyran-3-carbonitrile exhibited excellent AIE behavior with ca. 70-fold increase in fluorescence in 80% fw at 550nm. Furthermore, this compound showed exceptionally high fluorescence in nonpolar solvent (THF) as compared to polar solvents such as DMSO (ca. 200-fold increase in fluorescence). The DFT, DSC, and TGA analyses of the synthesized D-π-A compounds suggested the strong electron-donor ability of N-phCbz, with good thermal stability in the range of 231–393 °C. These N-phenyl-carbazole-appended pyranones with interesting AIE properties have great potential as probes for bioimaging applications as well as for optoelectronic materials.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2367-1988.
- Supporting Information
Publikationsverlauf
Eingereicht: 31. Mai 2024
Angenommen nach Revision: 16. Juli 2024
Accepted Manuscript online:
16. Juli 2024
Artikel online veröffentlicht:
13. August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ledwon P. Org. Electron. 2019; 75: 105422
- 1b Konidena RK, Chung WJ, Lee JY. Org. Lett. 2020; 22: 2786
- 1c Zhang Y, Lu L, Pan J, Liu H, Ma J. Mater. Lett. 2022; 313: 131745
- 1d Yang Z, Qin W, Lam JW. Y, Chen S, Sung HH. Y, Williams ID, Tang BZ. Chem. Sci. 2013; 4: 3725
- 1e Vishrutha KS, Ulla H, Raveendra KM, Bhat BR, Adhikari AV. Mater. Adv. 2024; 5: 2335
- 2 Zhang Y, Li H, Yang M, Dai W, Shi J, Tong B, Cai Z, Wang Z, Dong Y, Yu X. Chem. Commun. 2023; 59: 5329
- 3a Wex B, Kaafarani BR. J. Mater. Chem. C 2017; 5: 8622
- 3b Singh J, Nagar MR, Sharma CP, Gupta NM, Choudhury A, Rawat KS, Vats RP, Gupta S, Jou JH, Goel A. ACS Appl. Opt. Mater. 2023; 1: 229
- 4 Sathiyan G, Sivakumar EK. T, Ganesamoorthy R, Thangamuthu R, Sakthivel P. Tetrahedron Lett. 2016; 57: 243
- 5 Gao L, Schloemer TH, Zhang F, Chen X, Xiao C, Zhu K, Sellinger A. ACS Appl. Energy Mater. 2020; 3: 4492
- 6 Pundi A, Chang CJ, Chen J, Hsieh SR, Lee MC. Sens. Actuators, B 2021; 328: 129084
- 7 Yang L, Wang J, Yang L, Zhang C, Zhang R, Zhang Z, Liu B, Jiang C. RSC Adv. 2016; 6: 56384
- 8 Chen CH, Wang Y, Michinobu T, Chang SW, Chiu YC, Ke CY, Liou GS. ACS Appl. Mater. Interfaces 2020; 12: 6144
- 9 Montoya MM, Cerón-Carrasco JP, Hamao S, Eguchi R, Kubozono Y, Tárraga A, Curiel D. J. Mater. Chem. C 2017; 5: 7020
- 10 Driscoll LJ. O, Wang X, Jay M, Batsanov AS, Sadeghi H, Lambert CJ, Robinson BJ, Bryce MR. Angew. Chem. Int. Ed. 2020; 59: 882
- 11 Xu Z, Zhang Y, Wang B, Liu Z, Zhao J, Xie Y. Electrochim. Acta 2019; 302: 373
- 12 Ergun EG. C, Önal AM. J. Electroanal. Chem. 2018; 815: 158
- 13 Lee DY, Sivakumar G, Manju, Misra R, Seok SII. ACS Appl. Mater. Interfaces 2020; 12: 28246
- 14 Dumat B, Bordeau G, Faurel-Paul E, Mahuteau-Betzer F, Saettel N, Bombled M, Metgé G, Charra F, Fiorini-Debuisschert C, Teulade-Fichou M.-P. Biochimie 2011; 93: 1209
- 15 Gao Z.-J, Yeh T.-H, Xu J.-J, Lee C.-C, Chaudhary A, Wang B.-C, Liu S.-W, Chen C.-H. ACS Omega 2020; 5: 10553
- 16 Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature 2012; 492: 234
- 17a Li M, Peng F, Ying L, Xu J. J. Mater. Chem. C 2019; 5: 3553
- 17b Sharma A, Saklani D, Thomas KR. J, Swayamprabha ShahnawazS. S, Jou J.-H. Org. Electron. 2020; 86: 105864
- 17c Venkatramaiah N, Kumar GD, Chandrasekaran Y, Ganduri R, Patil S. ACS Appl. Mater. Interfaces 2018; 10: 3838
- 17d Altinolcek N, Battal A, Vardalli CN, Tavasli M, Yu HA, Peveler WJ, Skabara PJ. J. Mol. Struct. 2021; 1239: 130494
- 18a Chen C, Liu B. Nat. Commun. 2019; 10: 2111
- 18b Kabe R, Notsuka N, Yoshida K, Adachi C. Adv. Mater. 2016; 28: 655
- 19a Yang Z, Mao Z, Zhang X, Ou D, Mu Y, Zhang Y, Zhao C, Liu S, Chi Z, Xu J, Wu Y.-C, Lu P.-Y, Lien A, Bryce MR. Angew. Chem. Int. Ed. 2016; 55: 2181
- 19b Liu D, Cao Y, Yan X, Wang B. Res. Chem. Intermed. 2019; 45: 2429
- 20 Mao Z, Yang Z, Mu Y, Zhang Y, Wang Y.-F, Chi Z, Lo C.-C, Liu S, Lien A, Xu J. Angew. Chem. Int. Ed. 2015; 54: 6270
- 21 Hong Y, Lamab JW. Y, Tang BZ. Chem. Soc. Rev. 2011; 40: 5361
- 22 Mei J, Hong YN, Lam JW. Y, Qin AJ, Tang YH, Tang BZ. Adv. Mater. 2014; 26: 5429
- 23 Li S.-W, Yu C.-H, Ko C.-L, Chatterjee T, Hung W.-Y, Wong K.-T. ACS Appl. Mater. Interfaces 2018; 10: 12930
- 24a Tominaga Y. Trends Heterocycl. Chem. 1991; 2: 43
- 24b Junjappa H, Ila H, Asokan CV. Tetrahedron 1990; 46: 5423
- 25a Chakrabarti S, Panda K, Misra NC, Ila H, Junjappa H. Synlett 2005; 1437
- 25b Kumar A, Ila H, Junjappa H, Mhatre S. J. Chem. Soc., Chem. Commun. 1976; 592
- 25c Kumar SV, Acharya A, Ila H. J. Org. Chem. 2018; 12: 6607
- 25d Misra NC, Panda K, Ila H, Junjappa H. J. Org. Chem. 2007; 72: 1246
- 25e Kishore K, Reddy KR, Suresh JR, Ila H, Junjappa H. Tetrahedron 1999; 24: 7645
- 25f Yugandar S, Misra NC, Parameshwarappa G, Panda K, Ila H. Org. Lett. 2013; 15: 5250
- 25g Sundaram GS. M, Venkatesh C, Ila H, Junjappa H. Synlett 2007; 251
- 25h Misra NC, Panda K, Ila H, Junjappa H. J. Org. Chem. 2007; 4: 1246
- 26a Ram VJ, Goel A. Tetrahedron Lett. 1996; 37: 93
- 26b Goel A, Ram VJ. Tetrahedron 2009; 65: 7865
- 26c Sharma CP, Gupta NM, Singh J, Yadav RA. K, Dubey DK, Rawat KS, Jha AK, Jou J.-H, Goel A. J. Org. Chem. 2019; 84: 7674
- 26d Raghuvanshi A, Jha AK, Sharma A, Umar S, Mishra S, Kant R, Goel A. Chem. Eur. J. 2017; 23: 4527
- 26e Goel A, Singh FV, Dixit M, Verma D, Raghunandan R, Maulik PR. Chem. Asian J. 2007; 239
- 26f Ram VJ, Srivastava P, Goel A. Tetrahedron 2003; 59: 7141
- 26g Goel A, Singh FV. Tetrahedron Lett. 2005; 46: 5585
- 26h Goel A, Kumar V, Nag P, Bajpai V, Kumar B, Singh C, Prakash S, Anand RS. J. Org. Chem. 2011; 76: 7474
- 27a Sharma CP, Vyas A, Pandey P, Gupta S, Vats RP, Jaiswal SP, Bhatt ML. B, Sachdeva M, Goel A. J. Mater. Chem. B 2023; 11: 9922
- 27b Sharma A, Jha AK, Mishra S, Jain A, Chauhan BS, Kathuria M, Rawat KS, Gupta NM, Tripathi R, Mitra K, Sachdev M, Bhatt ML. B, Goel A. Bioconjugate Chem. 2018; 29: 3606
- 27c Sharma A, Umar S, Kar P, Singh K, Sachdev M, Goel A. Analyst 2016; 141: 137
- 27d Goel A, Sharma A, Kathuria M, Bhattacharjee A, Verma A, Mishra PR, Nazir A, Mitra K. Org. Lett. 2014; 16: 756