RSS-Feed abonnieren

DOI: 10.1055/a-2367-6943
Pd-Catalyzed Transfer Hydrogenation of Alkenes Using Tetrahydroxydiboron as the Sole Hydrogen Donor
This research was supported by Santa Clara University, the Clare Boothe Luce Program at Santa Clara University (undergraduate research award to I.C.R.), and the University of California Merced.

Abstract
Tetrahydroxydiboron-mediated catalytic transfer hydrogenations have typically involved co-additives that, like tetrahydroxydiboron itself, are H atom donors. Herein we report an alkene transfer hydrogenation method with tetrahydroxydiboron as the sole source of H atoms. The reaction uses Pd(OAc)2 as a convenient putative colloid pre-catalyst, and cyclic monoethers are competent solvents. Highly efficient alkene deuteration is demonstrated using tetradeuteroxydiboron.
Key words
tetrahydroxydiboron - transfer hydrogenation - palladium catalysis - alkene reduction - deuterium - catalytic hydrogenationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2367-6943.
- Supporting Information
Publikationsverlauf
Eingereicht: 06. Juni 2024
Angenommen nach Revision: 03. Juli 2024
Accepted Manuscript online:
16. Juli 2024
Artikel online veröffentlicht:
14. August 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Brieger G, Nestrick TJ. Chem. Rev. 1974; 74: 567
- 1b Zassinovich G, Mestroni G, Gladiali S. Chem. Rev. 1992; 92: 1051
- 2 Wang D, Astruct D. Chem. Rev. 2015; 115: 6621
- 3 Broggi J, Jurčík M, Songis O, Poater A, Cavallo LA. M. Z. Slawin A. M. Z, Cazin CS. J. J. Am. Chem. Soc. 2013; 135: 4588
- 4a Wang Y, Huang Z, Leng X, Zhu H, Liu G, Haung Z. J. Am. Chem. Soc. 2018; 140: 4417
- 4b Bao H, Zhou B, Jin H, Liu Y. J. Org. Chem. 2019; 84: 3579
- 5 Staubitz A, Robertson AP. M, Manners I. Chem. Rev. 2010; 110: 4079
- 6a Shirakawa E, Otsuka H, Hayashi T. Chem. Commun. 2005; 5885
- 6b Luo F, Pan C, Wang W, Ye Z, Cheng J. Tetrahedron 2010; 66: 1399
- 6c Wang G, Bin H, Sun M, Chen S, Liu J, Zhong C. Tetrahedron 2014; 70: 2175
- 6d Volkov A, Gustafson KP. J, Tai C.-W, Verho O, Bäckvall JE, Adolfsson H. Angew. Chem. Int. Ed. 2015; 54: 5122
- 6e Rahaim RJ, Maleczka RE. Org. Lett. 2011; 13: 584
- 6f Dal Zotto C, Virieux D, Campagne JM. Synlett 2009; 276
- 6g Argouarch G. New J. Chem. 2019; 43: 11041
- 7a Cummings SP, Le T.-N, Fernandez GE, Quiambao LG, Stokes BJ. J. Am. Chem. Soc. 2016; 138: 6107
- 7b Zhou Y, Zhou H, Liu S, Pi D, Shen G. Tetrahedron 2017; 73: 3898
- 7c Rao S, Prabhu KL. Chem. Eur. J. 2018; 24: 13954
- 7d Gates AM, Santos WL. Synthesis 2019; 51: 4619
- 7e Zhang K, Okumura S, Uozumi Y. Chem. Lett. 2024; 53: upae082
- 7f Zhang K, Okumura S, Uozumi Y. Eur. J. Org. Chem. 2024; 27: e202400322
- 7g Alghamdi HS, Ajeebi AF, Aziz MA, Alzahrani AS, Shaikh MN. ACS Omega 2024; 9: 11377
- 7h Wu B, Bai Y.-Q, Wang X.-Q, Huang W.-J, Zhou Y.-G. J. Org. Chem. 2024; 89: 710
- 8a Zhao Q, Liu X, Astruc D. Eur. J. Inorg. Chem. 2023; 26: e202300024
- 8b Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 8c Liu X, Zhang X, Zhang G, Sun S, Li D.-S. ACS Mater. Lett. 2023; 5: 783
- 8d Raducan M, Alam R, Szabó KJ. Angew. Chem. Int. Ed. 2012; 51: 13050
- 8e Molander GA, Trice SL. J, Kennedy SM, Dreher SD, Tudge MT. J. Am. Chem. Soc. 2012; 134: 11667
- 9a Gurung SR, Mitchell C, Huang J, Jonas M, Strawser JD, Daia E, Hardy A, O’Brien E, Hicks F, Papageorgiou CD. Org. Process Res. Dev. 2017; 21: 65
- 9b Williams MJ, Chen Q, Codan L, Dermenjian RK, Dreher S, Gibson AW, He X, Jin Y, Keen SP, Lee AY, Lieberman DR, Lin W, Liu G, McLaughlin M, Reibarkh M, Scott JP, Strickfuss S, Tan L, Varsolona RJ, Wen F. Org. Process Res. Dev. 2016; 20: 1227
- 9c Coombs JR, Green RA, Roberts F, Simmons EM, Stevens JM, Wisniewski SR. Organometallics 2019; 38: 157
- 9d Merritt JM, Borkar I, Buser JY, Campbell Brewer A, Campos O, Fleming J, Hansen C, Humenik A, Jefferey S, Kokitkar PB, Kolis SP, Forst MB, Lambertus GR, Martinelli JR, McCartan C, Moursy H, Murphy D, Murray MM, O’Donnell K, O’Sullivan R, Richardson GA, Xia H. Org. Process Res. Dev. 2022; 26: 773
- 10 Korvinson KA, Akula HK, Malinchak CT, Sebastian D, Wei W, Khandaker TA, Andrzejewska MR, Zajc B, Lakshman MK. Adv. Synth. Catal. 2020; 362: 166
- 11 Spaller WC, Lu JQ, Stokes BJ. Adv. Synth. Catal. 2022; 364: 2571
- 12 See the Supporting Information for details.
- 13 Metaboric acid is the product of β-hydride elimination of [M]–B(OH)2. For an example of tetrahydroxydiboron-mediated copper-catalyzed reduction of azaarenes and nitroarenes invoking metaboric acid as a byproduct, see: Pi D, Zhou H, Zhou Y, Liu Q, He R, Shen G, Uozumi Y. Tetrahedron 2018; 74: 2121
- 14a Elmore CS, Bragg RA. Bioorg. Med. Chem. Lett. 2015; 25: 167
- 14b Gant TG. J. Med. Chem. 2014; 57: 3595
- 15 Baldwin RM. J. Nucl. Med. 2005; 46: 1411
- 18 Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
- 19a Weddle KS, Aiken JD, Finke RG. J. Am. Chem. Soc. 1998; 120: 5653
- 19b Widegren JA, Finke RG. J. Mol. Catal. A: Chem. 2003; 198: 317
- 20 General Transfer Hydrogenation Procedure An oven-dried one-dram disposable borosilicate vial is charged with a magnetic stir bar, 58.3 mg of tetrahydroxydiboron (0.65 mmol, 1.3 equiv), 2.3 mg of Pd(OAc)2 (0.01 mmol, 0.02 equiv), and substrate if solid (0.5 mmol, 1.0 equiv). The vial is capped and purged with argon or nitrogen gas, then charged with 1.7 mL of degassed anhydrous THF and heated to 60 °C for 6 h with stirring at 600 rpm. After cooling to ambient temperature, the solution is filtered through a plug of silica gel and rinsed with dichloromethane.
- 21 Characterization Data of Representative Product 2a Yield (0.5 mmol scale): 88 mg (97%), colorless solid. 1H NMR (400 MHz, CDCl3): δ = 7.29–7.25 (m, 4 H), 7.21–7.16 (m, 6 H), 2.92 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 142.1, 128.6, 128.4, 126.0, 38.0.
- 22 A version of this manuscript was deposited on ChemRxiv prior to review: Yaghoubi M, Reyes IC, Stokes BJ. ChemRxiv 2024; preprint
For a relevant example using a disilane, see:
Leading examples employing R3SH reagents:
Examples employing polymeric silanes:
For examples using water, see:
For a homogeneous nickel-catalyzed asymmetric variant using hexafluoroisoproanol, see:
For a review of tetrahydroxydiboron in synthesis, see:
For a review of B2(OR)4 reagents in organic synthesis, see:
For a review of metal-free H2-evolving hydrolysis of B2(OH)4, see:
For leading examples of Miyaura borylation using B2(OH)4, see:
For a nickel-catalyzed variant, see:
For safety concerns surrounding H2 generation in transition-metal-catalyzed Miyaura borylations on industrial scale, see:
For background on the interpretation of mercury poisoning control experiments, see: