Subscribe to RSS
DOI: 10.1055/a-2372-3632
Dexamethasone, Remdesivir and Azithromycin modulate ACE2 and IL-6 in Lung Epithelial Cells
Dexamethason, Remdesivir und Azythromycin beeinflussen das Angiotensin-Converting Enzym 2 und das Zytokin IL-6 in LungenepithelzellenAbstract
Background The optimal use of steroids in COVID-19 patients remains challenging. Current S3-guidelines “Recommendations for patients with COVID-19” recommend dexamethasone (DEX) for patients requiring respiratory support, remdesivir (RD) in the early disease phase and azythromycin (AZ) is no longer recommended. We investigated effects of DEX, RD and AZ in a lipopolysaccharide induced inflammation in lung cells in vitro and analyzed publicly available datasets with a focus on the Angiotensin-converting enzyme 2 (ACE2) to better understand drugs’ mechanisms of action.
Methods human bronchial (Calu) and alveolar (A549) lung epithelial cells were treated with DEX, AZ or RDV in the presence of lipopolysaccharides (LPS). Gene expression (GE) of ACE2, IL-6 and the IL-6 protein release were measured. Publicly available GE data from lung tissues of COVID-19 patients and from lung cells treated with DEX were analyzed for the GE of ACE2.
Results DEX increased and RDV and AZ reduced the GE of ACE2 in LPS-stimulated bronchial and alveolar epithelial cells. Only DEX significantly reduced LPS-induced IL-6 releases in alveolar cells substantially. The database analyses showed an, albeit not always significant, increase in ACE2 for lung tissue or cell lines treated with DEX. Lung tissue from patients after COVID-19 infection as well as bronchial cell cultures after COVID-19 infection showed lower GEs of ACE2.
Discussion and Conclusion DEX can increase ACE2 expression in vitro and thereby the portal of entry of SARS-CoV-2 into lung cells during an LPS induced inflammation. Simultaneously the inflammatory marker IL-6 is reduced. Comparative database analyses indicate that these processes can also take place in vivo.
Zusammenfassung
Hintergrund und Fragestellung Der optimale Einsatz von Steroiden bei COVID-19 Patienten bleibt eine Herausforderung. Die aktuelle S3-Leitlinie „Empfehlungen zur Therapie von Patienten mit COVID-19“ empfiehlt Dexamethason (DEX) nur bei invasiv beatmeten Patienten sowie bei Patienten mit Sauerstoffbedarf, während Remdesivir (RD) nur in der Frühphase der Erkrankung und Azythromycin (AZ) nach anfänglichem Einsatz heute nicht mehr empfohlen wird. Wir untersuchten die Wirkungen von DEX, RD und AZ bei einer durch Lipopolysaccharide (LPS) induzierten Entzündung in Lungenzellen in vitro und erstellten Datenbankanalysen, um den Wirkmechanismen der Medikamente, insbesondere hinsichtlich des Angiotensin-converting enzyme 2 (ACE2) besser nachvollziehen zu können.
Methoden Humane bronchiale (Calu) und alveoläre (A549) Lungenepithelzellen wurden in Gegenwart von LPS mit DEX, AZ oder RDV behandelt. Die Genexpression (GE) von ACE2, IL-6 sowie die IL-6-Proteinfreisetzung wurden gemessen. Öffentlich zugängliche GE-Daten von Lungengeweben von COVID-19-Patienten und von mit DEX behandelten Lungenzellen wurden auf die GE von ACE2 hin untersucht.
Ergebnisse DEX erhöhte und RDV und AZ reduzierten die GE von ACE2 in LPS-stimulierten Bronchial- und Alveolarepithelzellen. Nur DEX reduzierte die LPS-induzierte IL-6-Freisetzung in Alveolarzellen erheblich. Die Datenbankanalysen zeigten für die mit DEX behandelten Lungengewebe oder Zelllinien einen, wenn auch nicht immer signifikanten Anstieg von ACE2. Lungengewebe von Patienten nach COVID-19-Infektion sowie bronchiale Zellkulturen nach einer COVID-19 Infektion wiesen niedrigere GEs von ACE2 auf.
Diskussion und Schlussfolgerung/Fazit DEX kann in vitro die ACE2-Genexpression und damit die Eintrittspforte von SARS-CoV-2 in Lungenzellen im Modell einer LPS-induzierten Entzündung erhöhen bei gleichzeitiger Senkung des Entzündungsmarkers IL-6. Vergleichende Datenbankanalysen weisen darauf hin, dass diese Prozesse auch in vivo bei Infektionen des Lungengewebes ablaufen können.
Schlüsselwörter
SARS-CoV-2-Infektion - ACE2-Expression - alveolare Epithelzellen - Lungenepithelzellen - IL-6 - LPSPublication History
Received: 12 March 2024
Accepted after revision: 22 July 2024
Article published online:
16 September 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Horby P, Lim WS, Emberson JR. RECOVERY Collaborative Group. et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med 2021; 384: 693-704 DOI: 10.1056/NEJMoa2021436.
- 2 Kluge S, Janssens U, Welte T. et al. S3-Leitlinie – Empfehlungen zur Therapie von Patienten mit COVID-19. Accessed January 31, 2024 at: https://register.awmf.org/assets/guidelines/113-001l_S3_Empfehlungen-zur-Therapie-von-Patienten-mit-COVID-19_2024-01.pdf
- 3 Sensen B, Wichmann D, Kluge S. Medikamentöse Therapiemaßnahmen bei akuter SARS-CoV-2-Infektion: Wer, wann und was?. Dtsch Med Wochenschr 2022; 147: 1313-1319 DOI: 10.1055/a-1817-8872. (PMID: 36195089)
- 4 Grundeis F, Ansems K, Dahms K. et al. Remdesivir for the treatment of COVID-19. Cochrane Database Syst Rev 2023; 1: CD014962 DOI: 10.1002/14651858.CD014962.pub2. (PMID: 36695483)
- 5 RECOVERY Collaborative Group. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2021; 397: 605-612 DOI: 10.1016/S0140-6736(21)00149-5.
- 6 Sivapalan P, Ulrik CS, Lapperre TS. et al. Azithromycin and hydroxychloroquine in hospitalised patients with confirmed COVID-19: a randomised double-blinded placebo-controlled trial. Eur Respir J 2022; 59: 2100752 DOI: 10.1183/13993003.00752-2021.
- 7 Metzger L. Covid-19: Verringert Azithromycin plus Hydroxychlofroquin die Mortalitätsrate?. Pneumologie 2022; 76: 389
- 8 COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) treatment Guidelines. National Institute of Health. Accessed August 14, 2023 at: https://www.covid19treatmentguidelines.nih.gov/
- 9 Hoffmann M, Kleine-Weber H, Schroeder S. et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271-280 DOI: 10.1016/j.cell.2020.02.052. (PMID: 32142651)
- 10 Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol 2021; 93: 250-256 DOI: 10.1002/jmv.26232. (PMID: 32592501)
- 11 Melms JC, Biermann J, Huang H. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 2021; 595: 114-119 DOI: 10.1038/s41586-021-03569-1. (PMID: 33915568)
- 12 Ulrich-Merzenich G, Hartbrod F, Kelber O. et al. Salicylate-based phytopharmaceuticals induce adaptive cytokine and chemokine network responses in human fibroblast cultures. Phytomedicine 2017; 34: 202-211 DOI: 10.1016/j.phymed.2017.08.002. (PMID: 28899503)
- 13 Aries M, Cook M, Hensley-McBain T. Peripheral Low Level Chronic LPS Injection as a Model of Neutrophil Activation in the Periphery and Brain in Mice. Res Sq [Preprint] 2023; rs.3.rs-3443401 DOI: 10.21203/rs.3.rs-3443401/v1.
- 14 Feng J, Zhong H, Mei S. et al. LPS-induced monocarboxylate transporter-1 inhibition facilitates lactate accumulation triggering epithelial-mesenchymal transformation and pulmonary fibrosis. Cell Mol Life Sci 2024; 81: 206 DOI: 10.1007/s00018-024-05242-y. (PMID: 38709307)
- 15 Chen M, Zhang J, Huang H. et al. miRNA-206–3p alleviates LPS-induced acute lung injury via inhibiting inflammation and pyroptosis through modulating TLR4/NF-κB/NLRP3 pathway. Sci Rep 2024; 14: 11860 DOI: 10.1038/s41598-024-62733-5.
- 16 Braakhuis HM, Gremmer ER, Bannuscher A. et al. Transferability and reproducibility of exposed air-liquid interface co-culture lung models. NanoImpact 2023; 31: 100466 DOI: 10.1016/j.impact.2023.100466.. (PMID: 37209722)
- 17 Abdel-Aziz H, Schneider M, Neuhuber W. et al. GPR84 and TREM-1 Signaling Contribute to the Pathogenesis of Reflux Esophagitis. Mol Med 2016; 21: 1011-1024 DOI: 10.2119/molmed.2015.00098. (PMID: 26650186)
- 18 Sinha S, Cheng K, Schäffer AA. et al. In vitro and in vivo identification of clinically approved drugs that modify ACE2 expression. Mol Syst Biol 2020; 16: e9628 DOI: 10.15252/msb.20209628.
- 19 Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; 395: 473-475 DOI: 10.1016/S0140-6736(20)30317-2.
- 20 Chalmers JD, Crichton ML, Goeminne PC. et al. Management of hospitalised adults with coronavirus disease 2019 (COVID-19): a European Respiratory Society living guideline. Eur Respir J 2021; 57: 2100048 DOI: 10.1183/13993003.00048-2021.
- 21 Vicovan AG, Petrescu DC, Cretu A. et al. Targeting Common Inflammatory Mediators in Experimental Severe Asthma and Acute Lung Injury. Pharmaceuticals (Basel) 2024; 17: 338 DOI: 10.3390/ph17030338.
- 22 Wang J, Wang C, Li X. et al. The effects of anti-asthma drugs on the phagocytic clearance of apoptotic eosinophils by A549 cells. Respir Med 2009; 103: 1693-1699 DOI: 10.1016/j.rmed.2009.05.014. (PMID: 19525101)
- 23 Ghezelbash B, Rostami M, Heidarvand M. et al. Correlation of Expression of MMP-2, ACE2, and TMPRSS2 Genes with Lymphopenia for Mild and Severity of COVID-19. Iran J Allergy Asthma Immunol 2023; 22: 91-98 DOI: 10.18502/ijaai.v22i1.12011.
- 24 Gerard L, Lecocq M, Bouzin C. et al. Increased Angiotensin-Converting Enzyme 2 and Loss of Alveolar Type II Cells in COVID-19-related Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2021; 204: 1024-1034 DOI: 10.1164/rccm.202012-4461OC. (PMID: 34449302)
- 25 Xiang Z, Liu J, Shi D. et al. Glucocorticoids improve severe or critical COVID-19 by activating ACE2 and reducing IL-6 levels. Int J Biol Sci 2020; 16: 2382-2391 DOI: 10.7150/ijbs.47652. (PMID: 32760206)
- 26 Wark PAB, Pathinayake PS, Kaiko G. et al. ACE2 expression is elevated in airway epithelial cells from older and male healthy individuals but reduced in asthma. Respirology 2021; 26: 442-451 DOI: 10.1111/resp.14003.
- 27 Mohamed T, Abdul-Hafez A, Uhal BD. Regulation of ACE-2 enzyme by hyperoxia in lung epithelial cells by post-translational modification. J Lung Pulm Respir Res 2021; 8: 47-52 (PMID: 34825051)
- 28 Imperio GE, Lye P, Mughis H. et al. Hypoxia alters the expression of ACE2 and TMPRSS2 SARS-CoV-2 cell entry mediators in hCMEC/D3 brain endothelial cells. Microvasc Res 2021; 138: 104232 DOI: 10.1016/j.mvr.2021.104232. (PMID: 34416267)
- 29 Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008; 93: 543-8 DOI: 10.1113/expphysiol.2007.040048. (PMID: 18448662)
- 30 Sattoju N, Gattu S, Merugu SS. et al. Dexamethasone, dexamethasone + remdesivir in treating moderate to severe COVID-19: retrospective observational cohort study. J Infect Dev Ctries 2023; 17: 953-960 DOI: 10.3855/jidc.17971. (PMID: 37515802)
- 31 Higuchi T, Shin JH, Takada D. et al. The Japanese Guide affected the prescription of steroids for COVID-19 inpatients during the COVID-19 epidemic in Japan. Sci Rep 2023; 13: 9041 DOI: 10.1038/s41598-023-36199-w.