RSS-Feed abonnieren
DOI: 10.1055/a-2374-8756
Thyroid Hormone and Diabetes Mellitus Interplay: Making Management of Comorbid Disorders Complicated
Abstract
Insulin and thyroid hormones play important roles in our body. Insulin helps regulate the glucose level while the thyroid hormones affect various cells and tissues, metabolizing protein, lipids, and glucose. Hyperthyroidism and thyrotoxicosis are potential hazards for type 2 diabetes mellitus. There is a high prevalence of hypothyroidism being more common compared to hyperthyroidism coexisting with diabetes mellitus. Thyroid hormones affect glucose metabolism through its action on peripheral tissues (gastrointestinal tract, liver, skeletal muscles, adipose tissue, and pancreas). High-level thyroid hormone causes hyperglycemia, upregulation of glucose transport, and reduction in glycogen storage. The reverse is observed during low levels of thyroid hormone along with insulin clearance. The net result of thyroid disorder is insulin resistance. Type 2 diabetes mellitus can downsize the regulation of thyroid stimulating hormones and impair the conversion of thyroxine to triiodothyronine in peripheral tissues. Furthermore, poorly managed type 2 diabetes mellitus may result in insulin resistance and hyperinsulinemia, contributing to the proliferation of thyroid tissue and an increase in nodule formation and goiter size. Although metformin proves advantageous for both type 2 diabetes mellitus and thyroid disorder patients, other antidiabetics like sulfonylureas, pioglitazone, and thiazolidinediones may have adverse effects on thyroid disorders. Moreover, antithyroid drugs such as methimazole can weaken glycemic control in individuals with diabetes. Thus, an interplay between both endocrinopathies is observed and individualized care and management of the disorder needs to be facilitated.
Keywords
thyroid hormones - insulin resistance - diabetes mellitus - thyroid disorder - hyperglycemiaPublikationsverlauf
Eingereicht: 15. Mai 2024
Angenommen nach Revision: 20. Juli 2024
Artikel online veröffentlicht:
19. August 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Brent GA. Mechanisms of thyroid hormone action. J Clin Invest 2012; 122: 3035-3043
- 2 Bassett JHD, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev 2016; 37: 135-187
- 3 Williams GR. Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 2008; 20: 784-794
- 4 Eom YS, Wilson JR, Bernet VJ. Links between thyroid disorders and glucose homeostasis. Diabetes Netab J 2022; 46: 239-256
- 5 Kelley DE, Reilly JP, Veneman T. et al. Effects of insulin on skeletal muscle glucose storage, oxidation, and glycolysis in humans. Am J Physiol Endocrinol Metab 1990; 258: E923-E929
- 6 Muretta JM, Mastick CC. How insulin regulates glucose transport in adipocytes. In: Insulin and IGFs, Chapter 10. New York: Academic Press; 2009: 245-286
- 7 Felts JM, Doell RG, Chaikoff IL. The effect of insulin on the pathways of conversion of glucose to fatty acids in the liver. J Biol Chem 1956; 219: 473-478
- 8 Aronoff SL, Berkowitz K, Shreiner B. et al. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spect 2004; 17: 183-190
- 9 Garmendia MA, Santos PS, Guillén-Grima F. et al. The incidence and prevalence of thyroid dysfunction in Europe: a meta-analysis. J Clin Endocrinol Metab 2014; 99: 923-931
- 10 Centeno MM, Gómez RL, Fregenal M. et al. [Prevalence of thyroid dysfunction in patients with type 2 diabetes mellitus]. Medicina (B Aires) 2016; 76: 355-358
- 11 Subekti I, Pramono LA, Dewiasty E. et al. Thyroid dysfunction in type 2 diabetes mellitus patients. Acta Med Indones 2017; 49: 314-323
- 12 Ozair M, Noor S, Raghav A. et al. Prevalence of thyroid disorders in North Indian type 2 diabetic subjects: a cross sectional study. Diabetes Metab Syndr 2018; 12: 301-304
- 13 Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018 41. S13-S27
- 14 Taylor R. Insulin resistance and type 2 diabetes. Diabetes 2012; 61: 778-779
- 15 Robertson RP. Antagonist: diabetes and insulin resistance--philosophy, science, and the multiplier hypothesis. J Lab Clin Med 1995; 125: 560-564
- 16 Cornier MA, Dabelea D, Hernandez TL. et al. The metabolic syndrome. Endocr Rev 2008; 29: 777-822
- 17 Díez JJ, Sánchez P, Iglesias P. Prevalence of thyroid dysfunction in patients with type 2 diabetes. Exp Clin Endocrinol Diabetes 2011; 119: 201-207
- 18 Jali MV, Kambar S, Jali SM. et al. Prevalence of thyroid dysfunction among type 2 diabetes mellitus patients. Diabetes Metab Syndr 2017; 11: S105-S108
- 19 Sathish R, Mohan V. Diabetes and thyroid diseases – a review. Int J Diabetes Dev Countries 2003; 23: 120-123
- 20 Nair A, Jayakumari C, Jabbar PK. et al. Prevalence and associations of hypothyroidism in Indian patients with type 2 diabetes mellitus. J Thyroid Res 2018; 2018 5386129
- 21 Sevilla-Romero E, Muñoz A, Pinazo-Durán MD. Low thyroid hormone levels impair the perinatal development of the rat retina. Ophthal Res 2002; 34: 181-191
- 22 Abidi A, Prabhakar DP. Association between diabetes and thyroid disorders. Plant Arch 2020; 20 3175-3182
- 23 Gronich N, Deftereos SN, Lavi I. et al. Hypothyroidism is a risk factor for new-onset diabetes: a cohort study. Diabetes Care 2015; 38: 1657-1664
- 24 Vyakaranam S, Vanaparthy S, Nori S. et al. Study of insulin resistance in subclinical hypothyroidism. Int J Health Sci Res 2014; 4: 147-153
- 25 Tuzcu A, Bahceci M, Gokalp D. et al. Subclinical hypothyroidism may be associated with elevated high-sensitive c-reactive protein (low grade inflammation) and fasting hyperinsulinemia. Endocr J 2005; 52: 89-94
- 26 Choi YM, Kim MK, Kwak MK. et al. Association between thyroid hormones and insulin resistance indices based on the Korean National Health and Nutrition Examination Survey. Sci Rep 2021; 11: 21738
- 27 Dimitriadis G, Baker B, Marsh H. et al. Effect of thyroid hormone excess on action, secretion, and metabolism of insulin in humans. Am J Physiol 1985; 248: E593-E601
- 28 Kalra S, Aggarwal S, Khandelwal D. Thyroid dysfunction and rype 2 diabetes mellitus: screening strategies and implications for management. Diabetes Ther 2019; 10: 2035-2044
- 29 Nishi M. Diabetes mellitus and thyroid diseases. Diabetol Int 2018; 9: 108-112
- 30 Eom YS, Wilson JR, Bernet VJ. Links between thyroid disorders and glucose homeostasis. Diabetes Metab J 2022; 46: 239-256
- 31 Chen C, Xie Z, Shen Y. et al. The roles of thyroid and thyroid hormone in pancreas: physiology and pathology. Int J Endocrinol 2018; 2018: 2861034
- 32 Augustin R, Mayoux E. Mammalian sugar transporters. In: Szablewski L (ed.). Glucose Homeostasis. Rijeka: IntechOpen; 2014
- 33 Wright EM, Loo DDF, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91: 733-794
- 34 Zheng Y, Scow JS, Duenes JA. et al. Mechanisms of glucose uptake in intestinal cell lines: Role of GLUT2. Surgery 2012; 151: 13-25
- 35 Matosin-Matekalo M, Mesonero JE, Delezay O. et al. Thyroid hormone regulation of the Na+/glucose cotransporter SGLT1 in Caco-2 cells. Biochem J 1998; 334: 633-640
- 36 Althausen TL, Stockholm M. Influence of the thyroid gland on absorption in the digestive tract. Am J Physiol Legacy Content 1938; 123: 577-588
- 37 Middleton WR. Thyroid hormones and the gut. Gut 1971; 12: 172-177
- 38 Handisurya A, Pacini G, Tura A. et al. Effects of T4 replacement therapy on glucose metabolism in subjects with subclinical (SH) and overt hypothyroidism (OH). Clin Endocrinol 2008; 69: 963-969
- 39 Ferrannini E, Bjorkman O, Reichard GAJ. et al. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes 1985; 34: 580-588
- 40 Adeva-Andany MM, Pérez-Felpete N, Fernández-Fernández C. et al. Liver glucose metabolism in humans. Biosci Rep 2016; 36 e00416
- 41 Mokuno T, Uchimura K, Hayashi R. et al. Glucose transporter 2 concentrations in hyper- and hypothyroid rat livers. J Endocrinol 1999; 160: 285-289
- 42 Godini A, Ghasemi A, Zahediasl S. The possible mechanisms of the impaired insulin secretion in hypothyroid rats. PLoS One 2015; 10: 1-16
- 43 Walker DG, Rao S. The role of glucokinase in the phosphorylation of glucose by rat liver. Biochem J 1964; 90: 360-368
- 44 Hers HG, Hue L. Gluconeogenesis and related aspects of glycolysis. Ann Rev Biochem 1983; 52: 617-653
- 45 Sibrowski W, Müller MJ, Seitz HJ. Effect of different thyroid states on rat liver glucokinase synthesis and degradation in vivo. J Biol Chem 1981; 256: 9490-9494
- 46 van de Werve G, Jeanrenaud B. Liver glycogen metabolism: an overview. Diabetes Metab Rev 1987; 3: 47-78
- 47 Malbon CC, Campbell R. Thyroid hormone administration in vivo regulates the activity of hepatic glycogen phosphorylase phosphatase. Endocrinology 1982; 111: 1791-1796
- 48 Bollen M, Stalmans W. The effect of the thyroid status on the activation of glycogen synthase in liver cells. Endocrinology 1988; 122: 2915-2919
- 49 Baquer NZ, Cascales M, McLean P. et al. Effects of thyroid hormone deficiency on the distribution of hepatic metabolites and control of pathways of carbohydrate metabolism in liver and adipose tissue of the rat. Eur J Biochem 1976; 68: 403-413
- 50 Gregory RB, Berry MN. The influence of thyroid state on hepatic glycolysis. Eur J Biochem 1995; 229: 344-348
- 51 Höppner W, Seitz HJ. Effect of thyroid hormones on glucokinase gene transcription in rat liver. J Biol Chem 1989; 264: 20643-20647
- 52 Weinberg MB, Utter MF. Effect of thyroid hormone on the turnover of rat liver pyruvate carboxylase and pyruvate dehydrogenase. J Biol Chem 1979; 254: 9492-9499
- 53 Holness MJ, French TJ, Schofield PS. et al. The relationship between fat synthesis and oxidation in the liver after re-feeding and its regulation by thyroid hormone. Biochem J 1987; 247: 621-626
- 54 Sugden MC, Fryer LG, Orfali KA. et al. Studies of the long-term regulation of hepatic pyruvate dehydrogenase kinase. Biochem J 1998; 329: 89-94
- 55 Cioffi F, Senese R, Lanni A. et al. Thyroid hormones and mitochondria: with a brief look at derivatives and analogues. Mol Cell Endocrinol 2013; 379: 51-61
- 56 Wrutniak-Cabello C, Casas F, Cabello G. Thyroid hormone action in mitochondria. J Mol Endocrinol 2001; 26: 67-77
- 57 Mutvei A, Kuzela S, Nelson BD. Control of mitochondrial transcription by thyroid hormone. Eur J Biochem 1989; 180: 235-240
- 58 Soboll S. Thyroid hormone action on mitochondrial energy transfer. Biochim Biophys Acta – Bioenergetics 1993; 1144: 1-16
- 59 Weitzel JM, Iwen KAH, Seitz HJ. Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol 2003; 88: 121-128
- 60 Thakran S, Sharma P, Attia RR. et al. Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone. J Biol Chem 2013; 288: 807-818
- 61 Miyamoto T, Amrein H. Gluconeogenesis: an ancient biochemical pathway with a new twist. Fly (Austin) 2017; 11: 218-223
- 62 Weinstein SP, O’Boyle E, Fisher M. et al. Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology 1994; 135: 649-654
- 63 Newsholme EA, Dimitriadis GD. Integration of biochemical and physiologic effects of insulin on glucose metabolism. Exp Clin Endocrinol Diabetes 2001; 109: S122-S134
- 64 Zorzano A, Palacín M, Gumà A. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Physiol Scand 2005; 183: 43-58
- 65 Weinstein SP, O’Boyle E, Haber RS. Thyroid hormone increases basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression. Diabetes 1994; 43: 1185-1189
- 66 Senese R, Valli V, Moreno M. et al. Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways. Pflugers Arch 2011; 461: 153-164
- 67 Hartong R, Wang N, Kurokawa R. et al. Delineation of three different thyroid hormone-response elements in promoter of rat sarcoplasmic reticulum Ca2+ATPase gene. Demonstration that retinoid X receptor binds 5’ to thyroid hormone receptor in response element 1. J Biol Chem 1994; 269: 13021-13029
- 68 Simonides WS, Brent GA, Thelen MH. et al. Characterization of the promoter of the rat sarcoplasmic endoplasmic reticulum Ca2+-ATPase 1 gene and analysis of thyroid hormone responsiveness. J Biol Chem 1996; 271: 32048-32056
- 69 Dimitriadis G, Parry-Billings M, Bevan S. et al. The effects of insulin on transport and metabolism of glucose in skeletal muscle from hyperthyroid and hypothyroid rats. Eur J Clin Invest 1997; 27: 475-483
- 70 Wang C. The relationship between type 2 diabetes mellitus and related thyroid diseases. J Diabetes Res 2013; 2013 390534
- 71 Hagen JH. Effect of insulin on the metabolism of adipose tissue from hyperthyroid rats. J Biol Chem 1960; 235: 2600-2603
- 72 Havekes B, Sauerwein HP. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone?. Curr Opin Clin Nutr Metab Care 2010; 13: 641-646
- 73 Mory G, Ricquier D, Pesquiés P. et al. Effects of hypothyroidism on the brown adipose tissue of adult rats: comparison with the effects of adaptation to cold. J Endocrinol 1981; 91: 515-524
- 74 Mirboluk AA, Rohani F, Asadi R. et al. Thyroid function test in diabetic ketoacidosis. Diabetes Metab Syndr 2017; 11: S623-S625
- 75 Rabe K, Lehrke M, Parhofer KG. et al. Adipokines and insulin resistance. Mol Med 2008; 14: 741-751
- 76 Ahima RS, Qi Y, Singhal NS. et al. Brain adipocytokine action and metabolic regulation. Diabetes 2006; 55: S145-S154
- 77 Fernández-Real JM, López-Bermejo A, Casamitjana R. et al. Novel interactions of adiponectin with the endocrine system and inflammatory parameters. J Clin Endocrinol Metab 2003; 88: 2714-2718
- 78 Iglesias P, Díez JJ. Influence of thyroid dysfunction on serum concentrations of adipocytokines. Cytokine 2007; 40: 61-70
- 79 Sieminska L, Niedziolka D, Pillich A. et al. Serum concentrations of adiponectin and resistin in hyperthyroid Graves’ disease patients. J Endocrinol Invest 2008; 31: 745-749
- 80 Chu C-H, Lam H-C, Lee J-K. et al. Hyperthyroidism-associated insulin resistance is not mediated by adiponectin levels. J Thyroid Res 2011; 2011 194721
- 81 Fukuchi M, Shimabukuro M, Shimajiri Y. et al. Evidence for a deficient pancreatic beta-cell response in a rat model of hyperthyroidism. Life Sci 2002; 71: 1059-1070
- 82 Furuya F, Shimura H, Yamashita S. et al. Liganded thyroid hormone receptor-alpha enhances proliferation of pancreatic beta-cells. J Biol Chem 2010; 285: 24477-24486
- 83 Karbalaei N, Noorafshan A, Hoshmandi E. Impaired glucose-stimulated insulin secretion and reduced β-cell mass in pancreatic islets of hyperthyroid rats. Exp Physiol 2016; 101: 1114-1127
- 84 Gerich J, Davis J, Lorenzi M. et al. Hormonal mechanisms of recovery from insulin-induced hypoglycemia in man. Am J Physiol 1979; 236: E380-E385
- 85 O’Meara NM, Blackman JD, Sturis J. et al. Alterations in the kinetics of C-peptide and insulin secretion in hyperthyroidism. J Clin Endocrinol Metab 1993; 76: 79-84
- 86 Grigoriadis G, Koufakis T, Kotsa K. Epidemiological, pathophysiological, and clinical considerations on the interplay between thyroid disorders and type 2 diabetes mellitus. Medicina 2023; 59 2013
- 87 Chen H-H, Yeh S-Y, Lin C-L. et al. Increased depression, diabetes and diabetic complications in Graves’ disease patients in Asia. QJM 2014; 107: 727-733
- 88 Okajima F, Ui M. Metabolism of glucose in hyper- and hypo-thyroid rats in vivo. Glucose-turnover values and futile-cycle activities obtained with 14C- and 3H-labelled glucose. Biochem J 1979; 182: 565-575
- 89 Maratou E, Hadjidakis DJ, Kollias A. et al. Studies of insulin resistance in patients with clinical and subclinical hypothyroidism. Eur J Endocrinol 2009; 160: 785-790
- 90 Stanická S, Vondra K, Pelikánová T. et al. Insulin sensitivity and counter-regulatory hormones in hypothyroidism and during thyroid hormone replacement therapy. Clin Chem Lab Med (CCLM) 2005; 43: 715-720
- 91 Lenzen S, Bailey CJ. Thyroid hormones, gonadal and adrenocortical steroids and the function of the islets of Langerhans. Endocr Rev 1984; 5: 411-434
- 92 Mitrou P, Raptis SA, Dimitriadis G. Insulin action in hyperthyroidism: a focus on muscle and adipose tissue. Endocr Rev 2010; 31: 663-679
- 93 Hage M, Zantout MS, Azar ST. Thyroid disorders and diabetes mellitus. J Thyroid Res 2011; 2011: 439463
- 94 Macek Jílková Z, Pavelka S, Flachs P. et al. Modulation of type I iodothyronine 5’-deiodinase activity in white adipose tissue by nutrition: possible involvement of leptin. Physiol Res 2010; 59: 561-569
- 95 Koga M, Murai J, Saito H. et al. Effects of thyroid hormone on serum glycated albumin levels: study on non-diabetic subjects. Diabetes Res Clin Pract 2009; 84: 163-167
- 96 Vigersky RA, Filmore-Nassar A, Glass AR. Thyrotropin suppression by metformin. J Clin Endocrinol Metab 2006; 91: 225-227
- 97 Cappelli C, Rotondi M, Pirola I. et al. TSH-lowering effect of metformin in type 2 diabetic patients: differences between euthyroid, untreated hypothyroid, and euthyroid on L-T4 therapy patients. Diabetes Care 2009; 32: 1589-1590
- 98 Isidro ML, Penín MA, Nemiña R. et al. Metformin reduces thyrotropin levels in obese, diabetic women with primary hypothyroidism on thyroxine replacement therapy. Endocrine 2007; 32: 79-82
- 99 Lupoli R, Di Minno A, Tortora A. et al. Effects of treatment with metformin on TSH levels: a meta-analysis of literature studies. J Clin Endocrinol Metab 2014; 99: E143-E148
- 100 Cappelli C, Rotondi M, Pirola I. et al. Thyreotropin levels in diabetic patients on metformin treatment. Eur J Endocrinol 2012; 167: 261-265
- 101 Pappa T, Alevizaki M. Metformin and thyroid: an update. Eur Thyroid J 2013; 2: 22-28
- 102 Łabuzek K, Suchy D, Gabryel B. et al. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep 2010; 62: 956-965
- 103 Chau-Van C, Gamba M, Salvi R. et al. Metformin inhibits adenosine 5’-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons. Endocrinology 2007; 148: 507-511
- 104 Mohácsik P, Zeöld A, Bianco AC. et al. Thyroid hormone and the neuroglia: both source and target. J Thyroid Res 2011; 2011 215718
- 105 Dora JM, Machado WE, Rheinheimer J. et al. Association of the type 2 deiodinase Thr92Ala polymorphism with type 2 diabetes: case-control study and meta-analysis. Eur J Endocrinol 2010; 163: 427-434
- 106 Chen G, Xu S, Renko K. et al. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab 2012; 97: E510-E520
- 107 Rezzónico J, Rezzónico M, Pusiol E. et al. Metformin treatment for small benign thyroid nodules in patients with insulin resistance. Metab Syndr Relat Disord 2011; 9: 69-75
- 108 Klubo-Gwiezdzinska J, Jensen K, Costello J. et al. Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells. Endocr Relat Cancer 2012; 19: 447-456
- 109 Brown J, Solomon DH. Mechanism of antithyroid effects of a sulfonylurea in the rat. Endocrinology 1958; 63: 473-480
- 110 Feely J, McLaren S, Shepherd AMM. et al. Antithyroid effect of chlorpropamide?. Human Toxicol 1983; 2: 149-153
- 111 Robuschi G, Emanuele R, Cavalli Sforza LT. et al. Effect of iodine administration on thyroid function in diabetic patients. Acta Diabetol Lat 1984; 21: 357-360
- 112 Nikkila EA, Jakobson T, Jokipii SG. et al. Thyroid function in diabetic patients under long-term sulfonylurea treatment. Acta Endocrinol (Copenh) 1960; 33: 623-629
- 113 Hershman JM, Craane TJ, Colwell JA. Effect of sulfonylurea drugs on the binding of triiodothyronine and thyroxine to thyroxine-binding globulin. J Clin Endocrinol Metab 1968; 28: 1605-1610
- 114 Tranquada RE, Solomon DH, Brown J. et al. The effect of oral hypoglycemic agents on thyroid function in the rat. Endocrinology 1960; 67: 293-297
- 115 Ikeda T, Ito Y, Murakami I. et al. Effect of glibenclamide on thyroid hormone metabolism in rats. Horm Metab Res 1986; 18: 517-520
- 116 Güney E, Efe B, Kebapç M. et al. Effects of second generation sulfonylureas on the thyroid. Türk J Endocrinol Metab 1999; 4: 173-176
- 117 Yki-Järvinen H, Thiazolidinediones N. Eng J Med 2004; 351: 1106-1118
- 118 Valyasevi RW, Harteneck DA, Dutton CM. et al. Stimulation of adipogenesis, peroxisome proliferator-activated receptor-gamma (PPARgamma), and thyrotropin receptor by PPARgamma agonist in human orbital preadipocyte fibroblasts. J Clin Endocrinol Metab 2002; 87: 2352-2358
- 119 Pistrosch F, Herbrig K, Oelschlaegel U. et al. PPARgamma-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis 2005; 183: 163-167
- 120 Tseng C-H. Rosiglitazone may reduce thyroid cancer risk in patients with type 2 diabetes. Ann Med 2013; 45: 539-544
- 121 Dorkhan M, Lantz M, Frid A. et al. Treatment with a thiazolidinedione increases eye protrusion in a subgroup of patients with type 2 diabetes. Clin Endocrinol (Oxf) 2006; 65: 35-39
- 122 Morimoto C, Schlossman SF. The structure and function of CD26 in the T-cell immune response. Immunol Rev 1998; 161: 55-70
- 123 Sekizaki T, Kameda H, Nomoto H. et al. Dipeptidyl peptidase-4 inhibitor might exacerbate Graves’ disease: A multicenter observational case–control study. J Diabetes Invest 2021; 12: 1978-1982
- 124 Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2017; 24: 73-79
- 125 Bastawy N, El-Mosallamy AEMK, Aljuaydi SH. et al. SGLT2 inhibitor as a potential therapeutic approach in hyperthyroidism-induced cardiopulmonary injury in rats. Pflugers Arch 2024; 476: 1125-1143
- 126 Nodirahon A, Majid H, Waghdhare S. et al. The effect of sodium glucose Co-transport 2 inhibitors on cognitive impairment and depression in type 2 diabetes mellitus patients. Clin Epidemiol Global Health 2024; 26: 101555
- 127 Rosol TJ. On-target effects of GLP-1 receptor agonists on thyroid C-cells in rats and mice. Toxicol Pathol 2013; 41: 303-309
- 128 Lisco G, De Tullio A, Disoteo O. et al. Glucagon-like peptide 1 receptor agonists and thyroid cancer: is it the time to be concerned?. Endocr Connect 2023; 12: e230257
- 129 Hu W, Song R, Cheng R. et al. Use of GLP-1 receptor agonists and occurrence of thyroid disorders: a meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2022; 13: 927859
- 130 Ruhla S, Arafat AM, Weickert MO. et al T3/rT3-ratio is associated with insulin resistance independent of TSH. Horm Metab Res 2011; 43: 130-134
- 131 Suzuki Y, Nanno M, Gemma R. et al. [The mechanism of thyroid hormone abnormalities in patients with diabetes mellitus]. Nihon Naibunpi Gakkai Zasshi 1994; 70: 465-470
- 132 Cooper DS. Antithyroid drugs. N Eng J Med 2005; 352: 905-917
- 133 Jain N, Savani M, Agarwal M. et al. Methimazole-induced insulin autoimmune syndrome. Ther Adv Endocrinol Metab 2016; 7: 178-181
- 134 Armitage M, Franklyn J, Scott-Morgan L. et al. Insulin autoantibodies in Graves’ disease--before and after carbimazole therapy. Diabetes Res Clin Pract 1990; 8: 169-176
- 135 Lu CC, Lee JK, Lam HC. et al. Insulin autoimmune syndrome in a patient with methimazole and carbimazole-treated Graves’ disease: a case report. Zhonghua Yi Xue Za Zhi (Taipei) 1994; 54: 353-358
- 136 Gomez Cruz MJ, Jabbar M, Saini N. et al. Severe hypoglycemia secondary to methimazole-induced insulin autoimmune syndrome in a 16 year old African-American male. Pediatr Diabetes 2012; 13: 652-655
- 137 López-Noriega L, Cobo-Vuilleumier N, Narbona-Pérez ÁJ. et al. Levothyroxine enhances glucose clearance and blunts the onset of experimental type 1 diabetes mellitus in mice. Br J Pharmacol 2017; 174: 3795-3810
- 138 Bilic-Komarica E, Beciragic A, Junuzovic D. Effects of treatment with l-thyroxin on glucose Rrgulation in patients with subclinical hypothyroidism. Med Arhiv 2012; 66: 364-368