RSS-Feed abonnieren
DOI: 10.1055/a-2377-6379
Navigation versus Robotik in der Wirbelsäulenchirurgie – Pro Navigation
Navigation Versus Robotics in Spinal Surgery – Pro Navigation
Zusammenfassung
Ziel dieser Arbeit ist es die Vorteile der spinalen Navigation bei der Platzierung von Implantaten darzulegen verglichen mit der konventionellen Technik, aber insbesondere auch im Vergleich zur robotischen Technik.
Der Einsatz der spinalen Navigation bei Instrumentierungen der Wirbelsäule und des Beckens führt zu einer signifikant geringeren Rate von Schraubenfehllagen, zu einer verbesserten Dimensionierung von Implantaten und zu einer signifikant reduzierten Komplikations- und Revisionsrate.
Weiterhin wird durch den Einsatz der spinalen Navigation die Strahlenbelastung für das an der OP beteiligte Personal signifikant reduziert.
Diese Vorteile sind in vielen wissenschaftlichen Arbeiten publiziert.
Die Verwendung der spinalen Navigation erhöht durch die Anschaffungs- und Wartungskosten, sowie Kosten für notwendige Einmalartikel die Kosten einer Operation.
Trotz der wissenschaftlich nachgewiesenen Vorteile der spinalen Navigation in der Wirbelsäulenchirurgie wird diese weltweit und auch in Deutschland nicht flächendeckend eingesetzt. Aktuell werden in Deutschland nur ca 1/3 aller Pedikelschrauben mit spinaler Navigation implantiert, obwohl die spinale Navigation für den klinischen Einsatz seit 25 Jahren verfügbar ist und klinisch eingesetzt wird.
Eine deutlich weitere Verbreitung ist in Anbetracht der unbestrittenen Vorteile aus medizinischer Sicht unbedingt wünschenswert.
Die seit einigen Jahren verfügbare Robotik ist mittlerweile auch für die Wirbelsäulenchirurgie verfügbar. Sie bietet die gleichen Vorteile wie die spinale Navigation bei jedoch deutlich höheren Anschaffungs- und Unterhaltskosten. Ein signifikanter Vorteil gegenüber der spinalen Navigation für das Platzieren von Implantaten in Hinblick auf Präzision und Effizienz ist bei den aktuell kommerziel verfügbaren Systemen nicht ersichtlich.
Geht man von einem insgesamt gedeckelten Budget aus so wäre aus medizinischer Sicht eine flächendeckendere Verwendung der spinalen Navigation wesentlich effektiver für die Verbesserung der Ergebnisqualität und Patientensicherheit als der zunehmende sehr teure Einsatz der Robotik.
Abstract
The purpose of this work is to outline the advantages of spinal navigation in the placement of implants compared to conventional techniques, and particularly in comparison to robotic techniques.
The use of spinal navigation during instrumentation of the spine and pelvis leads to a significantly lower rate of screw misplacements, improved sizing of implants, and a significantly reduced complication and revision rate. Additionally, the implementation of spinal navigation significantly reduces radiation exposure for the surgical staff involved in the operation.
These advantages have been published in many scientific papers. However, the use of spinal navigation increases the costs of surgery due to acquisition and maintenance costs, as well as the costs of necessary single-use items.
Despite the scientifically proven benefits of spinal navigation in spinal surgery, it is not widely used worldwide, including in Germany. Currently, only about one-third of all pedicle screws in Germany are implanted with spinal navigation, even though spinal navigation has been available for clinical use for 25 years. A significantly wider dissemination is highly desirable, considering the undisputed medical benefits.
Robotics, which has been available for several years, is also now applicable to spinal surgery. It offers the same advantages as spinal navigation but at significantly higher acquisition and maintenance costs. A significant advantage over spinal navigation for the placement of implants is not evident.
If we assume a capped overall budget, from a medical perspective, a more widespread use of spinal navigation would be much more effective in improving outcome quality and patient safety than the increasing very expensive use of robotics.
Schlüsselwörter
Wirbelsäule - spinale Navigation - Computernavigation - Pedikelschrauben - Robotik - Schraubenfehlplatzierung - KomplikationenKeywords
spine - spinal navigation - computernavigation - pedicle screws - robotics - pedicle screw misplacement - complicationsPublikationsverlauf
Artikel online veröffentlicht:
24. Januar 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Al Barbarawi MM, Allouh MZ. Cervical lateral mass screw-rod fixation: surgical experience with 2500 consecutive screws, an analytical review, and long-term outcomes. Br J Neurosurg 2015; 29: 699-704
- 2 Kothe R, Rüther W, Schneider E. et al. Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine 2004; 29: 1869-1875
- 3 Schmidt R, Wilke H-J, Claes L. et al. Pedicle screws enhance primary stability in multilevel cervical corporectomies: Biomechanical in vitro comparison of different implants including constrained and nonconstrained posterior instrumentations. Spine 2003; 28: 1821-1822
- 4 Bydon M, Xu R, Amin AG. et al. Safety and efficacy of pedicle screw placement using intraoperative computed tomography: consecutive series of 1148 pedicle screws. J Neurosurg Spine 2014; 21: 320-328
- 5 Richter M, Mattes T, Cakir B. Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine. Eur Spine J 2004; 13: 50-59
- 6 Amiot L-P, Labelle H, DeGuise JA. et al. Computer-assisted pedicle screw fixation. A feasibility study. Spine 1995; 20: 1208-1212
- 7 Nolte L-P, Zamorano LJ, Jiang Z. et al. Image-guided insertion of transpedicular screws. A laboratory set-up. Spine 1995; 20: 497-500
- 8 Laine T, Schlenzka D, Makitalo K. et al. Improved accuracy of pedicle screw insertion with computer-assisted surgery. A prospective clinical trial of 30 patients. Spine 1997; 22: 1254-1258
- 9 Hott JS, Papadopoulos SM, Theodore N. et al. Intraoperative Iso-C C-arm navigation in cervical spine surgery. Review of the first 52 cases. Spine 2004; 29: 2856-2860
- 10 Ludwig SC, Kowalski JM, Edwards CC. et al. Cervical pedicle screws. Comparative accuracy of two insertion techniques. Spine 2000; 25: 2675-2681
- 11 Ludwig SC, Kramer DL, Balderston RA. et al. Placement of pedicle screws in the human cadaveric cervical spine. Comparative accuracy of three techniques. Spine 2000; 25: 1655-1667
- 12 Richter M, Cakir B, Schmidt R. Cervical pedicle screws: conventional versus computer-assisted placement of cannulated screws. Spine 2005; 30: 2280-2287
- 13 Richter M, Amiot L-P, Neller S. et al. Computer-assisted surgery in posterior instrumentation of the cervical spine: an in-vitro feasibility study. Eur Spine J 2000; 9: S65-S70
- 14 Uehara M, Takahashi J, Ikegami S. et al. Screw perforation features in 129 consecutive patients performed computer-guided cervical pedicle screw insertion. Eur Spine J 2014; 23: 2189-2195
- 15 Weidner A, Wähler M, Chiu ST. et al. Modification of C1-C2 transarticular screw fixation by image-guided surgery. Spine 2000; 25: 2668-2674
- 16 Guha D, Jakubovic R, Gupta S. et al. Spinal intraoperative three dimensional navigation: correlation between clinical and absolute engineering accuracy. Spine J 2017; 17: 489-498
- 17 Holly LT, Foley KT. Intraoperative spinal navigation. Spine 2003; 28: S54-S61
- 18 Mac-Thiong J-M, Parent S, Poitras B. et al. Neurological outcome and management of pedicle screws misplaced totally within the spinal canal. Spine 2013; 38: 229-237
- 19 Manbachi A, Cobbold RS, Ginsberg HJ. Guided pedicle screw insertion: techniques and training. Spine J 2014; 14: 165-179
- 20 Mason A, Paulsen R, Babuska JM. et al. The accuracy of pedicle screw placement using image guidance systems. A systematic review. J Neurosurg Spine 2014; 20: 196-203
- 21 Navarro-Ramirez R, Lang G, Lian X. et al. Total navigation in spine surgery; a concise guide to elminate fluoroscopy using a intraoperative computed tomography 3-dimensional navigation system. World Neurosurg 2017; 100: 325-335
- 22 Shimokawa N, Takami T. Surgical safety of pedicle screw placement with computer navigation system. Neurosurg Rev 2017; 40: 251-258
- 23 Tian NF, Xu HZ. Image guided pedicle screw insertion accuracy: a meta-analysis. International Orthopaedics 2009; 33: 895-903
- 24 Richter M, Schmidt R, Claes L. Posterior atlantoaxial fixation. Biomechanical comparison of six different techniques. Spine 2002; 27: 1724-1732
- 25 Costa F, Ortolina A, Attuati L. et al. Management of C1–2 traumatic fractures using an intraoperative 3D imaging-based navigation system. J Neurosurg Spine 2015; 22: 128-133
- 26 Guppy KH, Chakrabarti I, Banerjee A. The use of intraoperative navigation for complex upper cervical spine surgery. Neurosurg Focus 2014; 36: E5
- 27 Kovanda TJ, Ansari SF, Qaiser R. et al. Feasibility of CT-based intraoperative 3D stereotactic image-guided navigation in the upper cervical spine of children 10 years of age or younger: initial experience. J Neurosurg Pediatr 2015; 16: 590-598
- 28 Pisapia JM, Nayak NR, Salinas RD. et al. Navigated odontoid screw placement using the O-arm: technical note and case series. J Neurosurg Spine 2017; 26: 10-18
- 29 Shin BJ, James AR, Njoku IU. et al. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 2012; 17: 113-122
- 30 Härtl R, Lam KS, Wang J. et al. Worldwide survey on the use of navigation in spine surgery. World Neurosurg 2013; 79: 162-172
- 31 Dea N, Fisher CG, Batke J. et al. Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient-level data cost-effectiveness analysis. Spine J 2016; 16: 23-31
- 32 Lee YC, Lee R. Image-guided pedicle screws using intraoperative cone-beam CT and navigation. A cost-effectiveness study. J Clin Neurosci 2020; 43: 1025-1032
- 33 Rahmathulla G, Nottmeier E, Pirris SM. et al. Intraoperative image-guided spinal navigation: technical pitfalls and their avoidance. Neurosurg Focus 2014; 36: E3
- 34 Tjardes T, Shafizadeh S, Rixen D. et al. Image guided surgery: state of the art and future directions. Eur Spine J 2010; 19: 25-45
- 35 Gebhard FT, Kraus MD, Schneider E. et al. Does computer-assisted spine surgery reduce intraoperative radiation doses?. Spine 2006; 31: 2024-2027
- 36 Mendelsohn D, Strelzow J, Dea N. et al. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J 2016; 16: 343-354
- 37 Nottmeier EW, Pirris SM, Edwards S. et al. Operating room radiation exposure in cone beam computed tomography – based, image-guided spinal surgery. J Neurosurg Spine 2013; 19: 226-231
- 38 Rampersaud YR, Foley KT, Shen AC. et al. Radiation exposure of the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 2000; 25: 2637-2645
- 39 Villard J, Ryang Y-M, Demetriades AK. et al. Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation. Spine 2014; 39: 1004-1009
- 40 Gong J, Huang X, Luo L. et al. Radiation dose reduction and surgical efficiency improvement in endoscopic transforaminal lumbar interbody fusion assisted by intraoperative O-arm navigation: a retrospective observational study. Neurospine 2022; 19: 376-384
- 41 Dewey P, Incoll I. Evaluation of thyroid shields for reduction of radiation exposure to orthopaedic surgeons. Aust N Z J Surg 1998; 68: 635-636
- 42 Mastrangelo G, Fedeli U, Fadda E. et al. Increased cancer risk among surgeons in an orthopaedic hospital. Occup Med (Lond) 2005; 55: 498-500
- 43 Naik A, Smith AD, Shaffer A. et al. Evaluating robot pedicle screw placement against conventional modalities: a systematic review and network meta-analysis. Neurosurgical Focus 2022; 52: 1-10
- 44 Lee NJ, Zuckermann SL, Buchanan IA. et al. Is there a difference between navigated and non-navigated robot cohorts in robot-assisted spine surgery? A multicenter propensity-matched analysis of 2800 screws and 372 patients. Spine J 2021; 21: 1504-1512
- 45 Tarawneh AM, Salem KM. A Systematic Review and Meta-analysis of Randomized Controlled Trials Comparing the Accuracy and Clinical Outcome of Pedicle Screw Placement Using Robot-Assisted Technology and Conventional Freehand Technique. Global Spine J 2021; 11: 575-586
- 46 Pojskić M, Bopp M, Nimsky C. et al. Initial Intraoperative Experience with Robotic-Assisted Pedicle Screw Placement with Cirq Robotic Alignment: An Evaluation of the First 70 Screws. J Clin Med 2021; 10: 5725-5749
- 47 Perdomo-Pantoja A, Ishida W, Zygourakis C. et al. Accuracy of Current Techniques for Placement of Pedicle Screws in the Spine: A Comprehensive Systematic Review and Meta-Analysis of 51,161 Screws. World Neurosurg 2019; 12: 664-678 e3
- 48 Ryang YM, Villard J, Obermuller T. et al. Learning Curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine. Spine J 2015; 15: 467-476
- 49 Laudato PA, PierzchalaKSchizas C. Pedicle Screw Insertion Accuracy Using O-Arm, Robotic Guidance, or Freehand Technique: A Comparative Study. Spine 2018; 43: E373-E378