CC BY-NC-ND 4.0 · Klin Monbl Augenheilkd 2024; 241(09): 1023-1031
DOI: 10.1055/a-2378-6138
Übersicht

Rolle der künstlichen Intelligenz bei verschiedenen retinalen Erkrankungen

Article in several languages: deutsch | English
Julia Mai
Universitätsklinik für Augenheilkunde und Optometrie, Medizinische Universität Wien, Österreich
,
Ursula Schmidt-Erfurth
Universitätsklinik für Augenheilkunde und Optometrie, Medizinische Universität Wien, Österreich
› Author Affiliations

Zusammenfassung

Die künstliche Intelligenz (KI) hat bereits Einzug in die Augenheilkunde gefunden durch erste zugelassene Algorithmen, die in der Praxis angewendet werden können. Als ein relevantes Anwendungsgebiet der KI erweisen sich insbesondere retinale Erkrankungen, da sie die Hauptursache einer Erblindung darstellen und die Zahl an Patienten, die an einer Netzhauterkrankung leiden, stetig zunimmt. Gleichzeitig werden durch die regelmäßige standardisierte und gut reproduzierbare Bildgebung mittels hochauflösender Modalitäten immense Datenmengen generiert, die von menschlichen Experten kaum zu verarbeiten sind. Außerdem erfährt die Augenheilkunde stetig neue Entwicklungen und Durchbrüche, die einer Reevaluierung des Patientenmanagements in der klinischen Routine bedürfen. Die KI ist in der Lage, diese Datenmengen effizient und objektiv zu analysieren und zusätzlich durch die Identifizierung relevanter Biomarker neue Einblicke in Krankheitsprozesse sowie Therapiemechanismen zu liefern. Die KI kann maßgeblich zum Screening, zur Klassifizierung sowie zur Prognose von unterschiedlichen Netzhauterkrankungen beitragen. Anwendungsfreundliche Auswertungstools (Clinical Decision Support Systems) für den klinischen Alltag sind bereits erhältlich, die Praxis und Gesundheitssystem durch effizientere Nutzung kosten- und zeitintensiver Ressourcen erheblich entlasten.



Publication History

Received: 24 April 2024

Accepted: 30 July 2024

Article published online:
16 September 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Klaver CC, Wolfs RC, Vingerling JR. et al. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study. Arch Ophthalmol 1998; 116: 653-658
  • 2 Lim JH, Wickremasinghe SS, Xie J. et al. Delay to treatment and visual outcomes in patients treated with anti-vascular endothelial growth factor for age-related macular degeneration. Am J Ophthalmol 2012; 153: 678-686 686.e1–2
  • 3 Bressler NM, Doan QV, Varma R. et al. Estimated cases of legal blindness and visual impairment avoided using ranibizumab for choroidal neovascularization: non-Hispanic white population in the United States with age-related macular degeneration. Arch Ophthal 2011; 129: 709-717
  • 4 Johnston RL, Lee AY, Buckle M. et al. UK Age-Related Macular Degeneration Electronic Medical Record System (AMD EMR) Users Group Report IV: Incidence of Blindness and Sight Impairment in Ranibizumab-Treated Patients. Ophthalmology 2016; 123: 2386-2392
  • 5 Heier JS, Lad EM, Holz FG. et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet 2023; 402: 1434-1448
  • 6 Khanani AM, Patel SS, Staurenghi G. et al. Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial. Lancet 2023; 402: 1449-1458
  • 7 Schmidt-Erfurth U, Klimscha S, Waldstein SM. et al. A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye (Lond) 2017; 31: 26-44
  • 8 Schmidt-Erfurth U, Sadeghipour A, Gerendas BS. et al. Artificial intelligence in retina. Prog Retin Eye Res 2018; 67: 1-29
  • 9 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444
  • 10 Teo ZL, Tham YC, Yu M. et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology 2021; 128: 1580-1591
  • 11 Abràmoff MD, Lavin PT, Birch M. et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 2018; 1: 39
  • 12 Bhaskaranand M, Ramachandra C, Bhat S. et al. The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study of More Than 100,000 Consecutive Encounters from People with Diabetes. Diabetes Technol Ther 2019; 21: 635-643
  • 13 Lawrence MG. The accuracy of digital-video retinal imaging to screen for diabetic retinopathy: an analysis of two digital-video retinal imaging systems using standard stereoscopic seven-field photography and dilated clinical examination as reference standards. Trans Am Ophthalmol Soc 2004; 102: 321-340
  • 14 Flaxel CJ, Adelman RA, Bailey ST. et al. Diabetic Retinopathy Preferred Practice Pattern® . Ophthalmology 2020; 127: P66-P145
  • 15 Gulshan V, Peng L, Coram M. et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016; 316: 2402-2410
  • 16 Ting DSW, Cheung CY, Lim G. et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA 2017; 318: 2211-2223
  • 17 Gerendas BS, Bogunovic H, Sadeghipour A. et al. Computational image analysis for prognosis determination in DME. Vis Res 2017; 139: 204-210
  • 18 Wong WL, Su X, Li X. et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014; 2: e106-e116
  • 19 Li JQ, Welchowski T, Schmid M. et al. Prevalence and incidence of age-related macular degeneration in Europe: a systematic review and meta-analysis. Br J Ophthalmol 2020; 104: 1077-1084
  • 20 Ferris FL3rd Wilkinson CP, Bird A. et al. Clinical classification of age-related macular degeneration. Ophthalmology 2013; 120: 844-851
  • 21 Burlina PM, Joshi N, Pekala M. et al. Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmol 2017; 135: 1170-1176
  • 22 Venhuizen FG, van Ginneken B, van Asten F. et al. Automated Staging of Age-Related Macular Degeneration Using Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2017; 58: 2318-2328
  • 23 Leingang O, Riedl S, Mai J. et al. Automated deep learning-based AMD detection and staging in real-world OCT datasets (PINNACLE study report 5). Sci Rep 2023; 13: 19545
  • 24 Schmidt-Erfurth U, Waldstein SM, Klimscha S. et al. Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence. Invest Ophthalmol Vis Sci 2018; 59: 3199-3208
  • 25 Schmidt-Erfurth U, Vogl WD, Jampol LM. et al. Application of Automated Quantification of Fluid Volumes to Anti-VEGF Therapy of Neovascular Age-Related Macular Degeneration. Ophthalmology 2020; 127: 1211-1219
  • 26 Schmidt-Erfurth U, Waldstein SM. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog Retin Eye Res 2016; 50: 1-24
  • 27 Schmidt-Erfurth U, Reiter GS, Riedl S. et al. AI-based monitoring of retinal fluid in disease activity and under therapy. Prog Retin Eye Res 2022; 86: 100972
  • 28 Göbel AP, Fleckenstein M, Schmitz-Valckenberg S. et al. Imaging geographic atrophy in age-related macular degeneration. Ophthalmologica 2011; 226: 182-190
  • 29 Mai J, Lachinov D, Riedl S. et al. Clinical validation for automated geographic atrophy monitoring on OCT under complement inhibitory treatment. Sci Rep 2023; 13: 7028
  • 30 Schmidt-Erfurth U, Mai J, Reiter GS. et al. Therapeutic effect of pegcetacoplan on retinal pigment epithelium (RPE) and photoreceptor (PR) integrity in geographic atrophy (GA) in the phase III OAKS and DERBY trials. Invest Ophthalmol Vis Sci 2023; 64: 919
  • 31 Anegondi N, Gao SS, Steffen V. et al. Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging. Ophthalmol Retina 2023; 7: 243-252
  • 32 Gigon A, Mosinska A, Montesel A. et al. Personalized Atrophy Risk Mapping in Age-Related Macular Degeneration. Transl Vis Sci Technol 2021; 10: 18
  • 33 Mai J, Lachinov D, Reiter GS. et al. Deep Learning-Based Prediction of Individual Geographic Atrophy Progression from a Single Baseline OCT. Ophthalmol Sci 2024; 4: 100466
  • 34 Gallardo M, Munk MR, Kurmann T. et al. Machine Learning Can Predict Anti-VEGF Treatment Demand in a Treat-and-Extend Regimen for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema. Ophthalmol Retina 2021; 5: 604-624
  • 35 Chandra RS, Ying GS. Evaluation of Multiple Machine Learning Models for Predicting Number of Anti-VEGF Injections in the Comparison of AMD Treatment Trials (CATT). Transl Vis Sci Technol 2023; 12: 18
  • 36 Bogunović H, Waldstein SM, Schlegl T. et al. Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. Invest Ophthalmol Vis Sci 2017; 58: 3240-3248
  • 37 Bogunovic H, Waldstein SM, Sadeghipour A. et al. Artificial intelligence to predict optimal retreatment intervals in treat-and-extend (T&E). Invest Ophthalmol Vis Sci 2018; 59: 1620
  • 38 Bogunović H, Mares V, Reiter GS. et al. Predicting treat-and-extend outcomes and treatment intervals in neovascular age-related macular degeneration from retinal optical coherence tomography using artificial intelligence. Front Med (Lausanne) 2022; 9: 958469
  • 39 Campbell JP, Ataer-Cansizoglu E, Bolon-Canedo V. et al. Expert diagnosis of plus disease in retinopathy of prematurity from computer-based image analysis. JAMA Ophthalmol 2016; 134: 651-657
  • 40 Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma. PLoS One 2017; 12: e0177726
  • 41 Vogl WD, Waldstein SM, Gerendas BS. et al. Analyzing and Predicting Visual Acuity Outcomes of Anti-VEGF Therapy by a Longitudinal Mixed Effects Model of Imaging and Clinical Data. Invest Ophthalmol Vis Sci 2017; 58: 4173-4181
  • 42 Chen TC, Lim WS, Wang VY. et al. Artificial Intelligence-Assisted Early Detection of Retinitis Pigmentosa – the Most Common Inherited Retinal Degeneration. J Digit Imaging 2021; 34: 948-958
  • 43 Liu YY, Ishikawa H, Chen M. et al. Computerized macular pathology diagnosis in spectral domain optical coherence tomography scans based on multiscale texture and shape features. Invest Ophthalmol Vis Sci 2011; 52: 8316-8322
  • 44 Poplin R, Varadarajan AV, Blumer K. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2018; 2: 158-164
  • 45 Korot E, Pontikos N, Liu X. et al. Predicting sex from retinal fundus photographs using automated deep learning. Sci Rep 2021; 11: 10286
  • 46 Chueh KM, Hsieh YT, Chen HH. et al. Identification of Sex and Age from Macular Optical Coherence Tomography and Feature Analysis Using Deep Learning. Am J Ophthalmol 2022; 235: 221-228
  • 47 RetInSight GmbH. RetInSight. 2022/2023. Im Internet (Stand: 02.08.2024): https://retinsight.com/
  • 48 RetinAI. RetinAI Discovery. 2022 Im Internet (Stand: 02.08.2024): https://www.retinai.com/products/discovery
  • 49 iHealthScreen. iPredict. 2020 Im Internet (Stand: 02.08.2024): https://ihealthscreen.org/
  • 50 RetinaLyze System A/S. RetinaLyze®. 2021. Safe, Fast and Efficient Retinal Investigations with AI and Telemedicine. Im Internet (Stand: 02.08.2024): https://www.retinalyze.com/