Synthesis
DOI: 10.1055/a-2378-8663
paper
Special Topic Dedicated to Prof. H. Ila

Photoredox-Catalyzed Synthesis of N-Aryl γ-Lactams via Radical Addition–Cyclization Cascade

Aznur Azim
,
Vidhul Vasudevan
,
Tanumoy Mandal
,
Generous support by the CSIR [fellowship to AA, TM and 02(0407)/21/EMR-II to SDS] and IISER Kolkata and DST-INSPIRE (for fellowship to VV and infrastructure) is gratefully acknowledged.


Abstract

A visible-light mediated one-pot synthesis of N-aryl γ-lactams is developed following a cascade radical addition/cyclization sequence. This transition metal-free approach proceeds efficiently at room temperature, employing an organic dye as the photocatalyst. Inexpensive N-arylglycines and acrylic acid derivatives were used as the starting materials and a vast array of diversely substituted N-aryl γ-lactams were synthesized in moderate to excellent yields. Detailed mechanistic experiments and comprehensive photophysical studies elucidated a plausible reaction mechanism.

Supporting Information



Publikationsverlauf

Eingereicht: 27. Juni 2024

Angenommen nach Revision: 02. August 2024

Accepted Manuscript online:
02. August 2024

Artikel online veröffentlicht:
28. August 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Caruano J, Muccioli GG, Robiette R. Org. Biomol. Chem. 2016; 14: 10134
    • 1b Ye LW, Shu C, Gagosz F. Org. Biomol. Chem. 2014; 12: 1833
  • 2 Gomez C, Gicquel M, Carry JC, Schio L, Retailleau P, Voituriez A, Marinetti A. J. Org. Chem. 2013; 78: 1488
    • 3a Stephen LJ, Brodie MJ. Ther. Adv. Neurol. Disord. 2018; 11: 1756285617742081
    • 3b Coutrot P, Claudel S, Didierjean C, Grison C. Bioorg. Med. Chem. Lett. 2006; 16: 417
    • 3c Langlois N, Wang H.-S. Synth. Commun. 1997; 27: 3133
    • 4a Yan W, Qu Z, Zhao F, Deng GJ, Mao GJ, Huang H. Adv. Synth. Catal. 2023; 365: 612
    • 4b Treacy SM, Vaz DR, Noman S, Tard C, Rovis T. Chem. Sci. 2023; 14: 1569
    • 4c Hartley WC, Schiel F, Ermini E, Melchiorre P. Angew. Chem. Int. Ed. 2022; 61: e202204735
    • 4d Chowdhury S, Chauhan G, Kumar A, Chaturvedi B, Behera C. Eur. J. Org. Chem. 2022; e202200850
    • 4e Zheng Y, Nie X, Long Y, Ji L, Fu H, Zheng X, Chen H, Li R. Chem. Commun. 2019; 55: 12384
    • 4f Wang F, Zhang X, He Y, Fan X. Org. Biomol. Chem. 2018; 17: 156
    • 4g Hong SY, Park Y, Hwang Y, Kim YB, Baik MH, Chang S. Science 2018; 359: 1016
    • 4h Wu C, Zhang H, Yu B, Chen Y, Ke Z, Guo S, Liu Z. ACS Catal. 2017; 7: 7772
    • 4i Lv Y, Pu W, Wang Q, Chen Q, Niu J, Zhang Q. Adv. Synth. Catal. 2017; 359: 3114
    • 4j Wang PL, Li Y, Wu Y, Li C, Lan Q, Wang XS. Org. Lett. 2015; 17: 3698
    • 4k Wang C, Zhang L, Chen C, Han J, Yao Y, Zhao Y. Chem. Sci. 2015; 6: 4610
    • 4l Zhao Y, Ang JQ. L, Ng AW. T, Yeung Y.-Y. RSC Adv. 2013; 3: 19765
  • 6 Comesse S, Sanselme M, Daich A. J. Org. Chem. 2008; 73: 5566
  • 7 Zhao H, Leonori D. Angew. Chem. Int. Ed. 2021; 60: 7669
  • 8 Qin Y, Cauwenbergh R, Pradhan S, Maiti R, Franck P, Das S. Nat. Commun. 2023; 14: 7604
    • 9a Pitre SP, Overman LE. Chem. Rev. 2022; 122: 1717
    • 9b Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. ACS Catal. 2021; 11: 1640
    • 9c Wang CS, Dixneuf PH, Soule JF. Chem. Rev. 2018; 118: 7532
    • 9d Marzo L, Pagire SK, Reiser O, Konig B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 9e Xie J, Jin H, Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193
    • 9f König B. Eur. J. Org. Chem. 2017; 1979
    • 9g Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 9h Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
    • 9i Narayanam JM, Stephenson CR. Chem. Soc. Rev. 2011; 40: 102
    • 10a Mulina OM, Ilovaisky AI, Opatz T, Terent’ev AO. Tetrahedron Lett. 2021; 64: 152737
    • 10b Kumar Hota S, Jinan D, Prakash Panda S, Pan R, Sahoo B, Murarka S. Asian J. Org. Chem. 2021; 10: 1848
    • 10c Singsardar M, Mondal S, Laru S, Hajra A. Org. Lett. 2019; 21: 5606
    • 10d Sharma S, Sharma A. Org. Biomol. Chem. 2019; 17: 4384
    • 10e Kibriya G, Mondal S, Hajra A. Org. Lett. 2018; 20: 7740
    • 10f Li X, Fang X, Zhuang S, Liu P, Sun P. Org. Lett. 2017; 19: 3580
    • 10g Shi Q, Li P, Zhu X, Wang L. Green Chem. 2016; 18: 4916
    • 11a Das S, Parida SK, Mandal T, Hota SK, Roy L, De Sarkar S, Murarka S. Org. Chem. Front. 2021; 8: 2256
    • 11b Das S, Mandal T, De Sarkar S. Adv. Synth. Catal. 2021; 364: 755
    • 11c Das S, Azim A, Hota SK, Panda SP, Murarka S, De Sarkar S. Chem. Commun. 2021; 57: 13130
    • 11d Das S, Parida SK, Mandal T, Sing L, De Sarkar S, Murarka S. Chem. Asian J. 2020; 15: 568
  • 12 Srivastava A, Singh PK, Ali A, Singh PP, Srivastava V. RSC Adv. 2020; 10: 39495
  • 13 Millet A, Lefebvre Q, Rueping M. Chem. Eur. J. 2016; 22: 13464
    • 14a Li HH, Li JQ, Zheng X, Huang PQ. Org. Lett. 2021; 23: 876
    • 14b Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
    • 14c Duan Y, Zhang M, Ruzi R, Wu Z, Zhu C. Org. Chem. Front. 2017; 4: 525
  • 15 Sorribes I, Cabrero-Antonino JR, Vicent C, Junge K, Beller M. J. Am. Chem. Soc. 2015; 137: 13580