CC BY 4.0 · Thromb Haemost 2025; 125(04): 340-351
DOI: 10.1055/a-2378-9088
Cellular Haemostasis and Platelets

Volume Regulation and Nonosmotic Volume of Individual Human Platelets Quantified by High-Speed Scanning Ion Conductance Microscopy

1   Institute of Applied Physics, University of Tübingen, Tübingen, Germany
,
1   Institute of Applied Physics, University of Tübingen, Tübingen, Germany
,
2   Department of Internal Medicine III, Cardiology and Angiology, University of Tübingen, Tübingen, Germany
,
1   Institute of Applied Physics, University of Tübingen, Tübingen, Germany
,
1   Institute of Applied Physics, University of Tübingen, Tübingen, Germany
› Institutsangaben
Funding This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Projektnummer 335549539/GRK2381 and Projektnummer 374031971-TRR 240. We acknowledge support by Open Access Publishing Fund of the University of Tübingen.


Abstract

Background

Platelets are anucleate cells that play an important role in wound closure following vessel injury. Maintaining a constant platelet volume is critical for platelet function. For example, water-induced swelling can promote procoagulant activity and initiate thrombosis. However, techniques for measuring changes in platelet volume such as light transmittance or impedance techniques have inherent limitations as they only allow qualitative measurements or do not work on the single-cell level.

Methods

Here, we introduce high-speed scanning ion conductance microscopy (HS-SICM) as a new platform for studying volume regulation mechanisms of individual platelets. We optimized HS-SICM to quantitatively image the morphology of adherent platelets as a function of time at scanning speeds up to 7 seconds per frame and with 0.1 fL precision.

Results

We demonstrate that HS-SICM can quantitatively measure the rapid swelling of individual platelets after a hypotonic shock and the following regulatory volume decrease (RVD). We found that the RVD of thrombin-, ADP-, and collagen-activated platelets was significantly reduced compared with nonactivated platelets. Applying the Boyle–van't Hoff relationship allowed us to extract the nonosmotic volume and volume fraction on a single-platelet level. Activation by thrombin or ADP, but not by collagen, resulted in a decrease of the nonosmotic volume, likely due to a release reaction, leaving the total volume unaffected.

Conclusion

This work shows that HS-SICM is a versatile tool for resolving rapid morphological changes and volume dynamics of adherent living platelets.

Authors' Contribution

K.K., J.S., M.G., J.R., and T.S. designed the study. K.K. performed the experiments, analyzed data, and drafted the manuscript. All authors interpreted data, discussed results, and revised the manuscript.


Supplementary Material



Publikationsverlauf

Eingereicht: 21. Dezember 2023

Angenommen: 28. Juli 2024

Accepted Manuscript online:
02. August 2024

Artikel online veröffentlicht:
29. August 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105 (Suppl. 01) S13-S33
  • 2 Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost 2015; 114 (03) 449-458
  • 3 Holinstat M. Normal platelet function. Cancer Metastasis Rev 2017; 36 (02) 195-198
  • 4 White JG, Leistikow EL, Escolar G. Platelet membrane responses to surface and suspension activation. Blood Cells 1990; 16 (01) 43-70 , discussion 70–72
  • 5 Rohlfing AK, Kolb K, Sigle M. et al. ACKR3 regulates platelet activation and ischemia-reperfusion tissue injury. Nat Commun 2022; 13 (01) 1823
  • 6 Posch S, Neundlinger I, Leitner M. et al. Activation induced morphological changes and integrin αIIbβ3 activity of living platelets. Methods 2013; 60 (02) 179-185
  • 7 Rheinlaender J, Vogel S, Seifert J. et al. Imaging the elastic modulus of human platelets during thrombin-induced activation using scanning ion conductance microscopy. Thromb Haemost 2015; 113 (02) 305-311
  • 8 Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: a link between thrombosis and inflammation?. Curr Pharm Des 2011; 17 (01) 47-58
  • 9 Fitzgerald DJ, Roy L, Catella F, FitzGerald GA. Platelet activation and atherothrombosis. N Engl J Med 1986; 315: 983-989
  • 10 Colkesen Y, Muderrisoglu H. The role of mean platelet volume in predicting thrombotic events. Clin Chem Lab Med 2012; 50 (04) 631-634
  • 11 Agbani EO, Williams CM, Li Y. et al. Aquaporin-1 regulates platelet procoagulant membrane dynamics and in vivo thrombosis. JCI Insight 2018; 3 (10) e99062
  • 12 Livne A, Grinstein S, Rothstein A. Volume-regulating behavior of human platelets. J Cell Physiol 1987; 131 (03) 354-363
  • 13 Odink J. Platelet preservation. II. The response of human platelet suspensions to hypotonic stress. Thromb Haemost 1976; 36 (01) 182-191
  • 14 Kim BK, Baldini MG. The platelet response to hypotonic shock. Its value as an indicator of platelet viability after storage. Transfusion 1974; 14 (02) 130-138
  • 15 Lee JS, Agrawal S, von Turkovich M, Taatjes DJ, Walz DA, Jena BP. Water channels in platelet volume regulation. J Cell Mol Med 2012; 16 (04) 945-949
  • 16 Szirmai M, Sarkadi B, Szász I, Gárdos G. Volume regulatory mechanisms of human platelets. Haematologia (Budap) 1988; 21 (01) 33-40
  • 17 Fritz M, Radmacher M, Gaub HE. In vitro activation of human platelets triggered and probed by atomic force microscopy. Exp Cell Res 1993; 205 (01) 187-190
  • 18 Errington RJ, White NS. Measuring dynamic cell volume in situ by confocal microscopy. Methods Mol Biol 1999; 122: 315-340
  • 19 Klaverkamp J, Völkl KP. Maintenance of platelet viability after platelet-labeling with fluorescein isothiocyanate. Haemostasis 1984; 14 (04) 337-346
  • 20 Nakamura T, Ariyoshi H, Kambayashi J. et al. Effect of low concentration of epinephrine on human platelet aggregation analyzed by particle counting method and confocal microscopy. J Lab Clin Med 1997; 130 (03) 262-270
  • 21 Hansma PK, Drake B, Marti O, Gould SAC, Prater CB. The scanning ion-conductance microscope. Science 1989; 243 (4891) 641-643
  • 22 Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ. Scanning ion conductance microscopy of living cells. Biophys J 1997; 73 (02) 653-658
  • 23 Seifert J, Rheinlaender J, Lang F, Gawaz M, Schäffer TE. Thrombin-induced cytoskeleton dynamics in spread human platelets observed with fast scanning ion conductance microscopy. Sci Rep 2017; 7 (01) 4810
  • 24 Korchev YE, Gorelik J, Lab MJ. et al. Cell volume measurement using scanning ion conductance microscopy. Biophys J 2000; 78 (01) 451-457
  • 25 Seifert J, Rheinlaender J, von Eysmondt H, Schäffer TE. Mechanics of migrating platelets investigated with scanning ion conductance microscopy. Nanoscale 2022; 14 (22) 8192-8199
  • 26 Liu X, Li Y, Zhu H. et al. Use of non-contact hopping probe ion conductance microscopy to investigate dynamic morphology of live platelets. Platelets 2015; 26 (05) 480-485
  • 27 Nestele JA, Rohlfing AK, Dicenta V. et al. Characterization of GPVI- or GPVI-CD39-coated nanoparticles and their impact on in vitro thrombus formation. Int J Mol Sci 2021; 23 (01) 11
  • 28 Puri RN, Colman RW. ADP-induced platelet activation. Crit Rev Biochem Mol Biol 1997; 32 (06) 437-502
  • 29 Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20 (09) 583-599
  • 30 Daniel JL, Dangelmaier C, Jin J, Ashby B, Smith JB, Kunapuli SP. Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem 1998; 273 (04) 2024-2029
  • 31 Ollivier V, Syvannarath V, Gros A. et al. Collagen can selectively trigger a platelet secretory phenotype via glycoprotein VI. PLoS One 2014; 9 (08) e104712
  • 32 Roberts DE, McNicol A, Bose R. Mechanism of collagen activation in human platelets. J Biol Chem 2004; 279 (19) 19421-19430
  • 33 Shibata M, Watanabe H, Uchihashi T, Ando T, Yasuda R. High-speed atomic force microscopy imaging of live mammalian cells. Biophys Physicobiol 2017; 14: 127-135
  • 34 Rheinlaender J, Geisse NA, Proksch R, Schäffer TE. Comparison of scanning ion conductance microscopy with atomic force microscopy for cell imaging. Langmuir 2011; 27 (02) 697-704
  • 35 Novak P, Li C, Shevchuk AI. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 2009; 6 (04) 279-281
  • 36 Lang F. Mechanisms and significance of cell volume regulation. J Am Coll Nutr 2007; 26 (5, Suppl): 613S-623S
  • 37 Rheinlaender J, Schäffer TE. Lateral resolution and image formation in scanning ion conductance microscopy. Anal Chem 2015; 87 (14) 7117-7124
  • 38 Nobel PS. The Boyle-Van't Hoff relation. J Theor Biol 1969; 23 (03) 375-379
  • 39 Zhou EH, Trepat X, Park CY. et al. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc Natl Acad Sci U S A 2009; 106 (26) 10632-10637
  • 40 Simeonov S, Schäffer TE. High-speed scanning ion conductance microscopy for sub-second topography imaging of live cells. Nanoscale 2019; 11 (17) 8579-8587
  • 41 Watanabe S, Kitazawa S, Sun L, Kodera N, Ando T. Development of high-speed ion conductance microscopy. Rev Sci Instrum 2019; 90 (12) 123704
  • 42 Summerer MH, Genco PV, Katz AJ. The response of human platelets to hypotonic stress: direct measurement of volume change. Ann Clin Lab Sci 1978; 8 (06) 447-452
  • 43 Meyer MM, Verkman AS. Human platelet osmotic water and nonelectrolyte transport. Am J Physiol 1986; 251 (4, Pt 1): C549-C557
  • 44 Wong KR, Verkman AS. Human platelet diffusional water permeability measured by nuclear magnetic resonance. Am J Physiol 1987; 252 (6, Pt 1): C618-C622
  • 45 Watanabe E, Sasakawa S. Changes of platelet cell volumes in hypotonic solution. Thromb Res 1983; 31 (01) 13-21
  • 46 Wright JR, Mahaut-Smith MP. Why do platelets express K+ channels?. Platelets 2021; 32 (07) 872-879
  • 47 Hoffmann EK, Dunham PB. Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol 1995; 161: 173-262
  • 48 O'Neill WC. Physiological significance of volume-regulatory transporters. Am J Physiol 1999; 276 (05) C995-C1011
  • 49 Beck F, Geiger J, Gambaryan S. et al. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition. Blood 2017; 129 (02) e1-e12
  • 50 Trumel C, Payrastre B, Plantavid M. et al. A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood 1999; 94 (12) 4156-4165
  • 51 Margalit A, Livne AA. Lipoxygenase product controls the regulatory volume decrease of human platelets. Platelets 1991; 2 (04) 207-214
  • 52 von Kügelgen I, Hoffmann K. Pharmacology and structure of P2Y receptors. Neuropharmacology 2016; 104: 50-61
  • 53 de Silva HA, Carver JG, Aronson JK. Pharmacological evidence of calcium-activated and voltage-gated potassium channels in human platelets. Clin Sci (Lond) 1997; 93 (03) 249-255
  • 54 Jennings LK, Fox JE, Edwards HH, Phillips DR. Changes in the cytoskeletal structure of human platelets following thrombin activation. J Biol Chem 1981; 256 (13) 6927-6932
  • 55 Rosskopf D. Sodium-hydrogen exchange and platelet function. J Thromb Thrombolysis 1999; 8 (01) 15-24
  • 56 Díaz-Ricart M, Arderiu G, Estebanell E. et al. Inhibition of cytoskeletal assembly by cytochalasin B prevents signaling through tyrosine phosphorylation and secretion triggered by collagen but not by thrombin. Am J Pathol 2002; 160 (01) 329-337
  • 57 May JA, Glenn JR, Spangenberg P, Heptinstall S. The composition of the platelet cytoskeleton following activation by ADP: effects of various agents that modulate platelet function. Platelets 1996; 7 (03) 159-168
  • 58 Blase C, Becker D, Kappel S, Bereiter-Hahn J. Microfilament dynamics during HaCaT cell volume regulation. Eur J Cell Biol 2009; 88 (03) 131-139
  • 59 Galizia L, Pizzoni A, Fernandez J, Rivarola V, Capurro C, Ford P. Functional interaction between AQP2 and TRPV4 in renal cells. J Cell Biochem 2012; 113 (02) 580-589
  • 60 Casella JF, Flanagan MD, Lin S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 1981; 293 (5830) 302-305
  • 61 Beussman KM, Mollica MY, Leonard A. et al. Black dots: High-yield traction force microscopy reveals structural factors contributing to platelet forces. Acta Biomater 2023; 163: 302-311
  • 62 Paknikar AK, Eltzner B, Köster S. Direct characterization of cytoskeletal reorganization during blood platelet spreading. Prog Biophys Mol Biol 2019; 144: 166-176
  • 63 Zaninetti C, Sachs L, Palankar R. Role of platelet cytoskeleton in platelet biomechanics: current and emerging methodologies and their potential relevance for the investigation of inherited platelet disorders. Hamostaseologie 2020; 40 (03) 337-347
  • 64 Downey GP, Grinstein S, Sue-A-Quan A, Czaban B, Chan CK. Volume regulation in leukocytes: requirement for an intact cytoskeleton. J Cell Physiol 1995; 163 (01) 96-104
  • 65 Peckys DB, Kleinhans FW, Mazur P. Rectification of the water permeability in COS-7 cells at 22, 10 and 0°C. PLoS One 2011; 6 (08) e23643
  • 66 Armitage WJ, Juss BK. Osmotic response of mammalian cells: effects of permeating cryoprotectants on nonsolvent volume. J Cell Physiol 1996; 168 (03) 532-538
  • 67 Hagen I. Effects of thrombin on washed, human platelets: changes in the subcellular fractions. Biochim Biophys Acta 1975; 392 (02) 242-254
  • 68 Baenziger NL, Brodie GN, Majerus PW. Isolation and properties of a thrombin-sensitive protein of human platelets. J Biol Chem 1972; 247 (09) 2723-2731
  • 69 Siffert W, Siffert G, Scheid P, Akkerman JW. Activation of Na+/H+ exchange and Ca2+ mobilization start simultaneously in thrombin-stimulated platelets. Evidence that platelet shape change disturbs early rises of BCECF fluorescence which causes an underestimation of actual cytosolic alkalinization. Biochem J 1989; 258 (02) 521-527
  • 70 Reed GL, Fitzgerald ML, Polgár J. Molecular mechanisms of platelet exocytosis: insights into the “secrete” life of thrombocytes. Blood 2000; 96 (10) 3334-3342
  • 71 Fernandez JM, Neher E, Gomperts BD. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 1984; 312 (5993) 453-455
  • 72 Hsu-Lin S, Berman CL, Furie BC, August D, Furie B. A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets. J Biol Chem 1984; 259 (14) 9121-9126
  • 73 Apodaca G. Modulation of membrane traffic by mechanical stimuli. Am J Physiol Renal Physiol 2002; 282 (02) F179-F190
  • 74 Henson JH. Relationships between the actin cytoskeleton and cell volume regulation. Microsc Res Tech 1999; 47 (02) 155-162
  • 75 Schäffer TE. Nanomechanics of molecules and living cells with scanning ion conductance microscopy. Anal Chem 2013; 85 (15) 6988-6994
  • 76 Chen C-C, Zhou Y, Baker LA. Scanning ion conductance microscopy. Annu Rev Anal Chem (Palo Alto, Calif) 2012; 5: 207-228