Subscribe to RSS
DOI: 10.1055/a-2378-9274
Ajuga taiwanensis Extract Promotes Wound-healing via Activation of PDGFR/MAPK Pathway
This work was supported by AXR Pharma Inc., Taipei City 112, Taiwan (CMU No. 107426CD) and China Medical University, Taichung 404328, Taiwan (CMU109-MF-93) to Y. L. L., and MOHW112-NRICM-D-325-000300 to J. J. C.Abstract
Chronic and prolonged wounds are a serious public problem that may severely affect the quality of life and result in psychological pressure. Fibroblasts play a crucial role in the wound process and in skin pathology. Herbal drugs have long been used for wound care worldwide. Ajuga taiwanensis (Lamiaceae) is a folk medicine for antipyretics, anti-inflammation, and reducing swelling in Taiwan. This study aimed to investigate the effect of A. taiwanensis in wound healing and the underlying mechanisms. Under human dermal fibroblast (HDF) wound-healing activity-guided fractionation, we found that a sub-fraction (AT-M) of A. taiwanensis extract (AT) and the major ingredients significantly promoted wound healing and decreased IL-1β and − 6 expressions on HDFs. Furthermore, the fraction of AT-M enhanced wound healing on C57BL/6 mouse skins, increased PDGFR expressions, and activated the PDGFR/MAPK pathway. Taken together, A. taiwanensis extracts promote wound healing by the PDGFR pathway and lead to enhanced cell spreading and motility, thereby having a possible beneficial effect on wound healing.
Publication History
Received: 11 December 2023
Accepted after revision: 05 June 2024
Article published online:
19 August 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Darby IA, Laverdet B, Bonte F, Desmouliere A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 2014; 7: 301-311
- 2 Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med 2014; 6: 265sr266
- 3 Liu E, Gao H, Zhao Y, Pang Y, Yao Y, Yang Z, Zhang X, Wang Y, Yang S, Ma X, Zeng J, Guo J. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence. Front Pharmacol 2022; 13: 900439
- 4 Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22: 1276-1312
- 5 Jian K, Yang C, Li T, Wu X, Shen J, Wei J, Yang Z, Yuan D, Zhao M, Shi J. PDGF-BB-derived supramolecular hydrogel for promoting skin wound healing. J Nanobiotechnology 2022; 20: 201
- 6 Li W, Fan J, Chen M, Chen M, Guan S, Sawcer D, Bokoch GM, Woodley DT. Mechanism of human dermal fibroblast migration driven by type I collagen and platelet-derived growth factor-BB. Mol Biol Cell 2004; 15: 294-309
- 7 Pieroni A, Quave CL, Villanelli ML, Mangino P, Sabbatini G, Santini L, Boccetti T, Profili M, Ciccioli T, Rampa LG, Antonini G, Girolamini C, Cecchi M, Tomasi M. Ethnopharmacognostic survey on the natural ingredients used in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. J Ethnopharmacol 2004; 91: 331-344
- 8 Ferreira AS, Macedo C, Silva AM, Delerue-Matos C, Costa P, Rodrigues F. Natural products for the prevention and treatment of oral mucositis – A review. Int J Mol Sci 2022; 23: 4385
- 9 Shedoeva A, Leavesley D, Upton Z, Fan C. Wound healing and the use of medicinal plants. Evid Based Complement Altern Med 2019; 2019: 2684108
- 10 Flora of Taiwan. 2nd edn.. Taipei, Taiwan: National Taiwan University; 1998
- 11 Chiu NY, Chang KH. The Illustrated Medicinal Plants of Taiwan (3). Taipei, Taiwan: SMC Publishing Inc; 2003
- 12 Hsieh WT, Liu YT, Lin WC. Anti-inflammatory properties of Ajuga bracteosa in vivo and in vitro study and their effects on mouse model of liver fibrosis. J Ethnopharmacol 2011; 135: 116-125
- 13 Riaz N, Malik A, Azizur R, Nawaz SA, Muhammad P, Choudhary MI. Cholinesterase-inhibiting withanolides from Ajuga bracteosa . Chem Biodivers 2004; 1: 1289-1295
- 14 Riaz N, Nawaz SA, Mukhtar N, Malik A, Afza N, Ali S, Ullah S, Muhammad P, Choudhary MI. Isolation and enzyme-inhibition studies of the chemical constituents from Ajuga bracteosa . Chem Biodivers 2007; 4: 72-83
- 15 Hsu WH, Lin BZ, Leu JD, Lo PH, Yu HY, Chen CT, Tu YH, Lin YL, Lee YJ. Involvement of 8-O-acetylharpagide for Ajuga taiwanensis mediated suppression of senescent phenotypes in human dermal fibroblasts. Sci Rep 2020; 10: 19731
- 16 Ganaie HA, Ali MN, Ganai BA, Meraj M, Ahmad M. Antibacterial activity of 14, 15-dihydroajugapitin and 8-o-acetylharpagide isolated from Ajuga bracteosa Wall ex. Benth against human pathogenic bacteria. Microb Pathog 2017; 103: 114-118
- 17 Chan YY, Wu TS, Kuoh CS, Damu AG. A new phytoecdysteroid from Ajuga taiwanensis . Chem Pharm Bull (Tokyo) 2005; 53: 836-838
- 18 Luan F, Han K, Li M, Zhang T, Liu A, Yu L, Lv H. Ethnomedicinal uses, phytochemistry, pharmacology, and toxicology of species from the genus Ajuga L.: A systematic review. Am J Chin Med 2019; 47: 959-1003
- 19 Lv H, Luo J, Kong L. A new neo-clerodane diterpene from Ajuga decumbens . Nat Prod Res 2014; 28: 196-200
- 20 Xiao T, Yan Z, Xiao S, Xiao Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res Ther 2020; 11: 232
- 21 Lin YL, Lu CK, Huang YJ, Chen HJ. Antioxidative caffeoylquinic acids and flavonoids from Hemerocallis fulva flowers. J Agric Food Chem 2011; 59: 8789-8795
- 22 Calcagno MP, Camps F, Coll J, Melé E, Sánchez-Baeza F. New phytoecdysteroids from roots of Ajuga reptans varieties. Tetrahedron 1996; 52: 10137-10146
- 23 Chan YY. Neoclerodane diterpenoids from Ajuga taiwanensis . Chem Pharm Bull (Tokyo) 2005; 53: 164-167
- 24 Smith KM, Goff DA, Abraham RJ. The NMR spectra of porphyrins. 27–proton NMR spectra of chlorophyll-a and pheophytin-a. Org Mag Reson 1984; 22: 779-783
- 25 Huang Y, Shi F, Wang L, Yang Y, Khan BM, Cheong KL, Liu Y. Preparation and evaluation of Bletilla striata polysaccharide/carboxymethyl chitosan/Carbomer 940 hydrogel for wound healing. Int J Biol Macromol 2019; 132: 729-737
- 26 Wallace HA, Basehore BM, Zito PM. Wound healing phases. Treasure Island (FL): StatPearls. Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK470443/ Accessed on 2024-06-12 at:
- 27 Rahiminiya A, Ghadim HH, Sadati Lamardi SNS, Ebrahimabadi MH, Fazljou SM, Ayati MH. Medicinal importance of Ajuga species in Iran: Ethnobotanical and traditional applications, phytochemical, and pharmacological studies. Jundishapur J Nat Pharm Prod 2022; 17: e119209
- 28 Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res 2012; 49: 35-43
- 29 Lu LC, Chang FY, Lv GZ, Lan SH. Effectiveness and safety of compound polymyxin B ointment in treatment of burn wounds: A meta-analysis. J Burn Care Res 2022; 43: 453-461
- 30 Hwang SJ, Ha GH, Seo WY, Kim CK, Kim K, Lee SB. Human collagen alpha-2 type I stimulates collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs). BMB Rep 2020; 53: 539-544
- 31 Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14: 364-395
- 32 Dinh T, Braunagel S, Rosenblum BI. Growth factors in wound healing: The present and the future?. Clin Podiatr Med Surg 2015; 32: 109-119
- 33 Jacobi J, Tam BY, Sundram U, von Degenfeld G, Blau HM, Kuo CJ, Cooke JP. Discordant effects of a soluble VEGF receptor on wound healing and angiogenesis. Gene Ther 2004; 11: 302-309
- 34 Fathke C, Wilson L, Shah K, Kim B, Hocking A, Moon R, Isik F. Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol 2006; 7: 4
- 35 Houschyar KS, Momeni A, Pyles MN, Maan ZN, Whittam AJ, Siemers F. Wnt signaling induces epithelial differentiation during cutaneous wound healing. Organogenesis 2015; 11: 95-104
- 36 Hui Q, Jin Z, Li X, Liu C, Wang X. FGF family: From drug development to clinical application. Int J Mol Sci 2018; 19: 1875
- 37 Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 2016; 365: 495-506
- 38 Wang X, Zhao S, Wang Z, Gao T. Platelets involved tumor cell EMT during circulation: communications and interventions. Cell Commun Signal 2022; 20: 82
- 39 Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M, Gerdin B, Denton CP, Bou-Gharios G, Black CM, Abraham DJ. Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 2006; 169: 2254-2266..,
- 40 Zinn R, Otterbein H, Lehnert H, Ungefroren H. A guardian of the epithelial phenotype and protector against epithelial-mesenchymal transition. Cells 2019; 8: 1569
- 41 Johnson BZ, Stevenson AW, Prele CM, Fear MW, Wood FM. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines 2020; 8: 101
- 42 Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005; 366: 1736-1743
- 43 Hu Y, Rao SS, Wang ZX, Cao J, Tan YJ, Luo J, Li HM, Zhang WS, Chen CY, Xie H. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21–3 p-mediated promotion of angiogenesis and fibroblast function. Theranostics 2018; 8: 169-184
- 44 Yan C, Chen J, Wang C, Yuan M, Kang Y, Wu Z, Li W, Zhang G, Machens HG, Rinkevich Y, Chen Z, Yang X, Xu X. Milk exosomes-mediated miR-31–5 p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv 2022; 29: 214-228
- 45 Zhu Y, Wang Y, Jia Y, Xu J, Chai Y. Roxadustat promotes angiogenesis through HIF-1alpha/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen 2019; 27: 324-334
- 46 Ban E, Jeong S, Park M, Kwon H, Park J, Song EJ, Kim A. Accelerated wound healing in diabetic mice by miRNA-497 and its anti-inflammatory activity. Biomed Pharmacother 2020; 121: 109613
- 47 Dunn L, Prosser HC, Tan JT, Vanags LZ, Ng MK, Bursill CA. Murine model of wound healing. J Vis Exp 2013; e50265
- 48 Tan NS, Wahli W. Studying wound repair in the mouse. Curr Protoc Mouse Biol 2013; 3: 171-185