RSS-Feed abonnieren
DOI: 10.1055/a-2380-3855
Direct Multicomponent Synthesis of C3-Arylated Pyrroles under Catalyst-Free Conditions
The authors acknowledge the financial support by DST-SERB, New Delhi (CRG/2020/003424) for this work.
Abstract
An operationally simple catalyst-free protocol for the direct regiospecific synthesis of C3-arylated/alkenylated pyrroles has been developed. The enamine-intermediate, in situ generated from succinaldehyde and a primary amine, was trapped with activated carbonyls before the Paal–Knorr reaction in a direct multicomponent ‘just-mix’ protocol to furnish pyrroles in good yields. Several C3-substituted N-alkylpyrroles have been prepared under open-flask conditions, avoiding protection-deprotection chemistry.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2380-3855.
- Supporting Information
Publikationsverlauf
Eingereicht: 05. Juni 2024
Angenommen nach Revision: 05. August 2024
Accepted Manuscript online:
05. August 2024
Artikel online veröffentlicht:
04. September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Kern JC, Terefenko E, Trybulski E, Berrodin TJ, Cohen J, Winneker RC, Yudt MR, Zhang Z, Zhu Y, Zhang P. Bioorg. Med. Chem. Lett. 2010; 20: 4816
- 1b Khajuria R, Dham S, Kapoor KK. RSC Adv. 2016; 6: 37039
- 1c Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
- 2a Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801
- 2b Davis RA, Buchanan MS, Duffy S, Avery VM, Charman SA, Charman WN, White KL, Shackleford DM, Edstein MD, Andrews KT, Camp D, Quinn RJ. J. Med. Chem. 2012; 55: 5851
- 2c Zhang W, Liu Z, Li S, Yang T, Zhang Q, Ma L, Tian X, Zhang H, Huang C, Zhang S, Ju J, Shen Y, Zhang C. Org. Lett. 2012; 14: 3364
- 2d Ueda K, Amaike K, Maceiczyk RM, Itami K, Yamaguchi J. J. Am. Chem. Soc. 2014; 136: 13226
- 2e Smith JA, Ng S, White J. Org. Biomol. Chem. 2006; 4: 2477
- 3a Rayan D, Rieth NP, Mankad E, Calmano J, Sadighi P. Org. Lett. 2010; 12: 2694
- 3b Cho BS, Bae HJ, Chung YK. J. Org. Chem. 2015; 80: 5302
- 3c Ehlers P, Petrosyan A, Baumgard J, Jopp S, Steinfeld N, Ghochikyan TV, Saghyan AS, Fischer C, Langer P. ChemCatChem 2013; 5: 2504
- 3d Nadres ET, Lazareva A, Daugulis O. J. Org. Chem. 2011; 76: 471
- 3e Ghosh D, Lee HM. Org. Lett. 2012; 14: 5534
- 3f Honraedt A, Raux M.-A, Le Grognec E, Jacquemin D, Felpin F.-X. Chem. Commun. 2014; 50: 5236
- 3g Punji B, Song W, Shevchenko GA, Ackermann L. Chem. Eur. J. 2013; 19: 10605
- 3h Laha JD, Bhimpuria RA, Prajapati DV, Dayala N, Sharma S. Chem. Commun. 2016; 52: 4329
- 4a Hunjan MK, Panday S, Gupta A, Bhaumik J, Das P, Laha JK. Chem. Rec. 2021; 21: 715
- 4b Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. Nat Commun. 2017; 8: 565
- 5 Ueda K, Amaike K, Maceiczyk RM, Itami K, Yamaguchi J. J. Am. Chem. Soc. 2014; 136: 13226
- 6 Liu S, Tzschucke CC. Eur. J. Org. Chem. 2016; 21: 3509
- 7 Ban K, Yamamoto Y, Sajiki H, Sawama Y. Org. Biomol. Chem. 2020; 18: 3898
- 8a Ayats C, Soley R, Albericio F, Alvarez M. Org. Biomol. Chem. 2009; 7: 860
- 8b Billingsley K, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 3358
- 9a Chen F, Shen T, Cui Y, Jiao N. Org. Lett. 2012; 14: 4926
- 9b Yan R, Zhou X, Li X, Liu X, Xiang L, Li Y, Huang G. J. Org. Chem. 2014; 79: 465
- 9c Huang H, Tang L, Cai J. RSC Adv. 2016; 6: 7011
- 9d Gao Y, Hu C, Wan JP. Tetrahedron Lett. 2016; 57: 4854
- 9e Emayavaramban B, Sen M, Sundararaju B. Org. Lett. 2017; 19: 6
- 9f Motornov V, Markos A, Beier P. Chem. Commun. 2018; 54: 3258
- 9g Shi T, Wang X, Yin G, Wang Z. Org. Chem. Front. 2022; 9: 1599
- 9h Smith ND, Huang D, Cosford ND. P. Org. Lett. 2002; 4: 3537
- 10a Son EJ, Kim JH, Kim K, Park CB. J. Mater. Chem. 2016; 4: 11179
- 10b Bolton JL, Dunlap T. Chem. Res. Toxicol. 2017; 30: 13
- 10c Dias GG, King A, de Moliner F, Vendrell M, da Silva Júnior E. Chem. Soc. Rev. 2018; 47: 12
- 10d Asche C. Mini-Rev. Med. Chem. 2005; 5: 449
- 10e Braasch-T M, Crans DC. Molecules 2020; 25: 4477
- 10f Arafeh KM, Ullah N. Nat. Prod. Commun. 2009; 4: 925
- 11a Hosamani B, Ribeiro MF, da Silva Júnior EN, Namboothiri IN. N. Org. Biomol. Chem. 2016; 14: 6913
- 11b Abraham I, Joshi R, Pardasani P, Pardasani RT. J. Braz. Chem. Soc. 2011; 22: 385
- 12a Wang S, Ning L, Li Z, Feng X, Liu X. Org. Lett. 2024; 26: 3844
- 12b Chen Y, Li G.-X, Peng A.-Q, Tang Y, Wang L. Org. Lett. 2022; 24: 5525
- 12c Vazquez JC, Davis J, Nesterov VN, Wang H, Luo W. Org. Lett. 2021; 23: 3136
- 12d Wang C, Chen X, Zhou S, Gong L. Chem. Commun. 2010; 46: 1275
- 12e Liu QJ, Zhu J, Song XY, Wang L, Wang SR, Tang Y. Angew. Chem. Int. Ed. 2018; 57: 3810
- 13 Arroyo Y, de Paz M, Rodriguez JF, Sanz-Tejedor MA, Ruano JL. G. J. Org. Chem. 2002; 67: 5638
- 14a Alemán J, Richter B, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 5515
- 14b Alemán J, Cabrera S, Maerten E, Overgaard J, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 5520
- 14c Yu J.-S, Zhou F, Liu Y.-L, Zhou J. Beilstein J. Org. Chem. 2012; 8: 1360
- 14d Siau W.-Y, Li W, Xue F, Ren Q, Wu M, Sun S, Guo H, Jiang X, Wang J. Chem. Eur. J. 2012; 18: 9491
- 14e Zhu G, Bao G, Li Y, Yang J, Sun W, Li J, Hong L, Wang R. Org. Lett. 2016; 18: 5288
- 15a Chen YH, Cheng DJ, Zhang J, Wang Y, Liu XY, Tan B. J. Am. Chem. Soc. 2015; 137: 15062
- 15b Chen YH, Li HH, Zhang X, Xiang SH, Li S, Tan B. Angew. Chem. Int. Ed. 2020; 59: 11374
- 15c Coombs G, Sak MH, Miller SJ. Angew. Chem. Int. Ed. 2020; 59: 2875
- 15d Lu DL, Chen YH, Xiang SH, Yu P, Tan B, Li S. Org. Lett. 2019; 21: 6000
- 15e Xi CC, Zhao XJ, Tian JM, Chen ZM, Zhang K, Zhang FM, Tu YQ, Dong JW. Org. Lett. 2020; 22: 4995
- 16a Kumar I, Mir NA, Ramaraju P, Wakhloo BP. RSC Adv. 2012; 2: 8922
- 16b Mir NA, Choudhary S, Ramaraju P, Singh D, Kumar I. RSC Adv. 2016; 6. 39741
- 16c Singh A, Mir NA, Choudhary S, Singh D, Sharma P, Kant R, Kumar I. RSC Adv. 2018; 8: 15448
- 16d Choudhary S, Singh A, Yadav J, Mir NA, Anthal S, Kant R, Kumar I. New J. Chem. 2019; 43: 953
- 16e Choudhary S, Yadav J, Mamta, Pawar AP, Vanaparthi S, Mir NA, Iype E, Sharma DK, Kant R, Kumar I. Org. Biomol. Chem. 2020; 18: 1155
- 17a Pawar AP, Yadav J, Mir NA, Iype E, Rangan K, Anthal S, Kant R, Kumar I. Chem. Commun. 2021; 57: 251
- 17b Pawar AP, Yadav J, Dolas AJ, Iype E, Rangan K, Kumar I. Org. Biomol. Chem. 2022; 20: 5747
- 17c Pawar AP, Yadav J, Dolas AJ, Nagare YK, Iype E, Rangan K, Kumar I. Org. Lett. 2022; 24: 7549
- 18 CCDC 2222683 (7h) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures (for more details, see ESI)