Subscribe to RSS
DOI: 10.1055/a-2382-4428
Serendipity as a Driving Force in the Synthesis of Isatins Substituted with Electron-Donating Groups
The research was funded by an internal Enamine grant and by the Ministry of Education and Science of Ukraine (grant number 0123U102102).

Dedicated to the Ukrainian Air Defense Forces who made this publication possible
Abstract
An efficient synthetic procedure for the synthesis of isatins was found after careful analysis of the serendipitous results of the unexpected products obtained by aromatic nucleophilic substitution when it was attempted to introduce 6-fluoroisatins to the classic Pfitzinger reaction. Attentive analysis of these results led to elaborating a methodology for synthesizing electron-enriched isatins, including those with hydroxy-, alkoxy-, alkylthio-, and dialkylamino-substituted aromatic rings. Limitations of the method were established. The reaction conditions were optimized according to the understanding of water’s role. Finally, the classic Pfitzinger reaction procedure was modified to yield the expected 2-substituted 7-fluoroquinoline-4-carboxylic acids.
Key words
EDG-substituted isatins - aromatic nucleophilic substitution - Pfitzinger reaction - water effect - quinolinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2382-4428.
- Supporting Information
Publication History
Received: 30 March 2024
Accepted after revision: 07 August 2024
Accepted Manuscript online:
07 August 2024
Article published online:
26 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
- 1b Zhungietu GI, Rekhter MA. Isatin and Its Derivatives . Chișinău Shtiintsa: 1977
- 2a Asif M, Azaz T, Tiwari B, Nasibullah M. Tetrahedron 2023; 134: 133308
- 2b Bhaskar G, Arun Yu, Balachandran Ch, Saikumar Ch, Perumal PT. Eur. J. Med. Chem. 2012; 51: 79
- 3a For examples of ‘classics in total synthesis’ including surugatoxin and neosurugatoxin, see: da Silva JF. M, Garden SJ, Pinto AC. J. Braz. Chem. Soc. 2001; 12: 273
- 3b For novel examples, see: Wang, M.; Wu, Y.; Xu, M.; Liu, S. J. Org. Chem. 2023, 88, 1256.
- 4 Uroos M, Hameed A, Naz S, Shah MR. Indole Alkaloids: Spirooxindole. In Visual Guides to Natural Product Synthesis Series . Elsevier; Amstserdam: 2022
- 5a Ahmad R, Salim F. Oxindole Alkaloids of Uncaria (Rubiaceae, Subfamily Cinchonoideae): A Review on Its Structure, Properties, and Bioactivities. In Studies in Natural Products Chemistry, Vol. 45, Chap. 12. Atta-ur-Rahman, Elsevier; Amsterdam: 2015: 485
- 5b Jones K. Cat’s Claw: Healing Vine of Peru . Sylvan Press; Seattle: 1995
- 5c Laus G. Phytother. Res. 2004; 18: 259
- 5d Batiha GE.-S, Beshbishy MA, Wasef L, Elewa YH. A, Abd El-Hack ME, Taha AE, Al-Sagheer AA, Devkota HP, Tufarelli V. Appl. Sci. 2020; 10: 2668
- 5e Jossang A, Jossang P, Hadi HA, Sevenet T, Bodo B. J. Org. Chem. 1991; 56: 6527
- 6a Salleh WM. N. H. W, Shakri NM, Khamis S, Setzer WN, Nadri MH. Nat. Prod. Res. 2022; 36: 1909
- 6b Kulkarni MG, Dhondge AP, Chavhan SW, Borhade AS, Shaikh YB, Birhade DR, Desai MP, Dhatrak NR. Beilstein J. Org. Chem. 2010; 6: 876
- 7 Borthwick AD. Chem. Rev. 2012; 112: 3641
- 8a Hu Y, Chen S, Yang F, Dong S. Marine Drugs 2021; 19: 658
- 8b Tsuda M, Kasai Y, Komatsu K, Sone T, Tanaka M, Mikami Y, Kobayashi J. Org. Lett. 2004; 6: 3087
- 9 Panda SS, Girgis AS, Aziz MN, Bekheit MS. Molecules 2023; 28: 618
- 10 Stevens FC, Bloomquist WE, Borel AG, Cohen ML, Droste CA, Heiman ML, Kriauciunas A, Sall DJ, Tinsley FC, Jesudason CD. Bioorg. Med. Chem. Lett. 2007; 17: 6270
- 11 Chafeev M, Chowdhury S, Fraser L, Fu J, Langille J, Liu S, Sun J, Sun S, Sviridov S, Wood M, Zenova AY, Jia Q, Cadieux J.-JA, Gauthier SJ, Douglas AF, Hsieh T, Chakka N, Cikojevic Z. Patent US2017114075A1, 2, 2017
- 12 Giordanetto F, Jensen M, Jogini V, Snow R. Patent WO2022/251561, 2022
- 13 Bignan GC, Battista K, Connolly PJ, Orsini MJ, Liu J, Middleton SA, Reitz AB. Bioorg. Med. Chem. Lett. 2005; 15: 5022
- 14a Kim MK. Oncol. Lett. 2018; 16: 6895
- 14b Yoshida M, Seimiya H, Okue M, Yashiroda Y, Shirai F, Tsumura T, Kano Y, Washizuka K, Yoshimoto N, Kouda Y, Fukami T, Chikada T, Watanabe T. Patent EP3480198A1, 2019
- 15 Weinstabl H, Gollner A, Ramharter J, Wunberg T. Patent WO2016001376A1, 2016
- 16 Wang Z. Sandmeyer Isatin Synthesis. In Comprehensive Organic Name Reactions and Reagents . Wang Z. John Wiley & Sons; Hoboken: 2010
- 17 Sandmeyer T. Helv. Chim. Acta 1919; 2: 234
- 19 Ilangovan A, Satish G. J. Org. Chem. 2014; 79: 4984
- 20 Söderberg BC. G, Gorugantula SP, Howerton CR, Petersen JL, Dantale SW. Tetrahedron 2009; 65: 7357
- 21 Zhang C, Li S, Bureš F, Lee R, Ye X, Jiang Z. ACS Catal. 2016; 6: 6853
- 22a Rodrigo E, Wiechert R, Walter MW, Brajea W, Geneste H. Green Chem. 2022; 24: 1469
- 22b Zheng X, Huang D, Hua W, Quan M, Zhao X. Patent CN109438468A, 2, 2019
- 23a Che T, Chen S.-B, Tu J.-L, Wang B, Wang Y.-Q, Zhang Y, Wang J, Wang Z.-Q, Zhang Z.-P, Ou T.-M, Zhao Y, Tan J.-H, Huang Z.-S. J. Med. Chem. 2018; 61: 3436
- 23b Chen GC, Bhagwat BV, Liao P.-Y, Chen H.-T, Lin S.-B, Chern J.-W. Bioorg. Med. Chem. Lett. 2007; 17: 1769
- 23c Thumser S, Köttner L, Hoffmann N, Mayer P, Dube H. J. Am. Chem. Soc. 2021; 143: 18251
- 24a Bentley JM, Adams DR, Bebbington D, Benwell KR, Bickerdike MJ, Davidson JE. P, Dawson CE, Dourish CT, Duncton MA. J, Gaur S, George AR, Giles PR, Hamlyn RJ, Kennett GA, Knight AR, Malcolm CS, Mansell HL, Misra A, Monck NJ. T, Pratt RM, Quirk K, Roffey JR. A, Vickers SP, Cliffe IA. Bioorg. Med. Chem. Lett. 2004; 14: 2367
- 24b Ma D, Wang K, Xia S, Li Z, Zhao J, Li Y. Patent CN110642874A, 2020
- 25 Tietze LF, Eicher T. Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium, 2nd ed. Thieme; Stuttgart: 1991
- 26a Maltby KA, Sharma K, Short MA. S, Farooque S, Hamill R, Blacker AJ, Kapur N, Willans CE, Nguyen BN. ACS Sustainable Chem. Eng. 2023; 11: 8675
- 26b Cortes-Clerget M, Yu J, Kincaid JR. A, Walde P, Gallou F, Lipshutz BH. Chem. Sci. 2021; 12: 4237
- 26c Le DN, Wright TJ, Alwedi E, Hartmanshenn C, Li H, McMullen JP, DiRocco DA. Org. Process Res. Dev. 2024; 28: 451
- 26d Gawande MB, Bonifácio VD. B, Luque R, Branco PS, Varma RS. Chem. Soc. Rev. 2013; 42: 5522
- 27a Luo F, Dong H, Ren W, Wang Y. Org. Lett. 2022; 24: 7727
- 27b He R, Wu S, Tang H, Huo X, Sun Z, Zhang W. Org. Lett. 2018; 20: 6183
- 28 Iyer KR, Camara K, Daniel-Ivad M, Trilles R, Pimentel-Elardo SM, Fossen JL, Marchillo K, Liu Z, Singh S, Muñoz JF, Kim SH, Porco JA, Cuomo CA, Williams NS, Ibrahim AS, Edwards JE, Andes DR, Nodwell JR, Brown LE, Whitesell L, Robbins N, Cowen LE. Nat. Commun. 2020; 11: 6429
- 29 Zhou G, Aslanian R, Gallo G, Khan T, Kuang R, Purakkattle B, De Ruiz M, Stamford A, Ting P, Wu H, Wang H, Xiao D, Yu T, Zhang Y, Mullins D, Hodgson R. Bioorg. Med. Chem. Lett. 2016; 26: 1348
- 30 Lindsay-Scott PJ, Barlow H. Synlett 2016; 27: 1516
- 31 Carter KR. Macromolecules 1995; 28: 6462
- 32 Shaaban K, Shaaban M, Nair V, Schuhmann I, Win H, Lei L, Dittrich B, Helmke E, Schüffler A, Laatsch H. Z. Naturforsch. B 2016; 71: 1191
For the N-alkylation of isatins via NH-deprotonation, see: