Subscribe to RSS
DOI: 10.1055/a-2382-9631
PIFA-Mediated Intramolecular Dearomatization of Phenol-Tethered 1,2-Diazoles: Synthesis of Spirocyclohexadienone-pyrazolo[3,4-b]piperidinones
This work was supported by the Department of Atomic Energy, Government of India.
Abstract
In recent years, the significance of spirocyclic motifs in drug discovery has increased, owing to their unique ability to engage biological targets. We present the first example of PIFA-mediated dearomative spirocyclization of phenol-tethered pyrazoles, highlighting intramolecular trapping by the pyrazole moiety. This method efficiently affords a variety of spirocyclohexadienone-pyrazolo[3,4-b]piperidinones with yields of up to 82%. Mechanistic studies reveal that the dearomatization process involves a cationic intermediate.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2382-9631.
- Supporting Information
Publication History
Received: 17 June 2024
Accepted after revision: 08 August 2024
Accepted Manuscript online:
08 August 2024
Article published online:
12 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Hiesinger K, Dar’in D, Proschak E, Krasavin M. J. Med. Chem. 2021; 64: 150
- 1b Ertl P. J. Chem. Inf. Model. 2024; 64: 1245
- 1c McInturff EL, France SP, Leverett CA, Flick AC, Lindsey EA, Berritt S, Carney DW, DeForest JC, Ding HX, Fink SJ, Gibson TS, Gray K, Hubbell AK, Johnson AM, Liu Y, Mahapatra S, McAlpine IJ, Watson RB, O’Donnell CJ. J. Med. Chem. 2023; 66: 10150
- 1d Marson CM. Chem. Soc. Rev. 2011; 40: 5514
- 1e Kotha S, Panguluri NR, Ali R. Eur. J. Org. Chem. 2017; 2017: 5316
- 1f Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. J. Med. Chem. 2021; 64: 2339
- 1g Benedetti E, Micouin L. Expert Opin. Drug Discovery 2024; 19: 263
- 1h Moshnenko N, Kazantsev A, Chupakhin E, Bakulina O, Dar’in D. Molecules 2023; 28: 4209
- 1i Batista VF, Pinto D, Silva AM. S. Expert Opin. Drug Discovery 2022; 17: 603
- 1j Yang J, Wang Y, Guan W, Su W, Li G, Zhang S, Yao H. Eur. J. Med. Chem. 2022; 237: 114361
- 2 Halász J, Podányi B, Sánta-Csutor A, Böcskei Z, Simon K, Hanusz M, Hermecz I. J. Mol. Struct. 2003; 654: 187
- 3 Cheng B, Wang Q, An Y, Chen F. Nat. Prod. Rep. 2024; 41: 1060
- 4 Guo K, Fang T, Wang J, Wu AA, Wang Y, Jiang J, Wu X, Song S, Su W, Xu Q, Deng X. Bioorg. Med. Chem. Lett. 2014; 24: 4995
- 5 Zhou Q, Cheng H.-G, Jia S, Chen R, Man Y. Synthesis 2024; 56: 1695
- 6 Wang L, Yang Z, Ni T, Shi W, Guo Y, Li K, Shi A, Wu S, Sheng C. Bioorg. Med. Chem. Lett. 2020; 30: 126662
- 7 Zou B, Chan WL, Ding M, Leong SY, Nilar S, Seah PG, Liu W, Karuna R, Blasco F, Yip A, Chao A, Susila A, Dong H, Wang QY, Xu HY, Chan K, Wan KF, Gu F, Diagana TT, Wagner T, Dix I, Shi PY, Smith PW. ACS Med. Chem. Lett. 2015; 6: 344
- 8a Xu X, Zhong L, Feng H, Van der Eycken EV. Chem. Rec. 2023; 23: e202300101
- 8b Tan EY. K, Mat Lani AS, Sow W, Liu Y, Li H, Chiba S. Angew. Chem. Int. Ed. 2023; 62: e202309764
- 8c Xia ZL, Xu-Xu QF, Zheng C, You SL. Chem. Soc. Rev. 2020; 49: 286
- 8d Huck CJ, Sarlah D. Chem 2020; 6: 1589
- 8e Wertjes WC, Southgate EH, Sarlah D. Chem. Soc. Rev. 2018; 47: 7996
- 8f Huck CJ, Boyko YD, Sarlah D. Nat. Prod. Rep. 2022; 39: 2231
- 9a Wang H, Luan X. Org. Biomol. Chem. 2016; 14: 9451
- 9b Reddy CR, Prajapti SK, Warudikar K, Ranjan R, Rao BB. Org. Biomol. Chem. 2017; 15: 3130
- 9c Bai L, Liu J, Luan X. Transition-Metal-Catalyzed Dearomative Spiroannulation Reactions. In Spiro Compounds: Synthesis and Applications. Rios Torres R. Wiley; Hoboken: 2022: 313-355
- 9d Okumura M, Sarlah D. Eur. J. Org. Chem. 2020; 2020: 1259
- 9e Nemoto T. Chem. Pharm. Bull. 2023; 71: 624
- 9f Boudry E, Bourdreux F, Marrot J, Moreau X, Ghiazza C. J. Am. Chem. Soc. 2024; 146: 2845
- 9g Xu H, Li Y, Feng K, Zhao R, Zhu C. Synlett 2023; 35: 1089
- 9h Juneau A, Lepage I, Sabbah SG, Winter AH, Frenette M. J. Org. Chem. 2022; 87: 14274
- 9i Xiao X, Wengryniuk SE. Synlett 2021; 32: 752
- 9j An J, Bandini M. Eur. J. Org. Chem. 2020; 2020: 4087
- 9k Zheng C, You S.-L. Chem 2016; 1: 830
- 9l Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Org. Biomol. Chem. 2021; 19: 3960
- 10 Kumar R, Singh FV, Takenaga N, Dohi T. Chem. Asian J. 2022; 17: e202101115
- 11a Escolano M, Gavina D, Alzuet-Pina G, Diaz-Oltra S, Sanchez-Rosello M, Pozo CD. Chem. Rev. 2024; 124: 1122
- 11b Aleksiev M, Garcia Mancheno O. Chem. Commun. 2023; 59: 3360
- 11c Bhattacharjee S, Laru S, Hajra A. Org. Biomol. Chem. 2022; 20: 8893
- 11d Zhang Y, Ji P, Gao F, Dong Y, Huang H, Wang C, Zhou Z, Wang W. Commun. Chem. 2021; 4: 20
- 11e Nair SR, Baire B. Asian J. Org. Chem. 2021; 10: 932
- 11f Vincent G, Abou-Hamdan H, Kouklovsky C. Synlett 2020; 31: 1775
- 12a Fan R, Ding Q, Ye Y. Synthesis 2012; 45: 1
- 12b Quideau S, Pouységu L, Peixoto PA, Deffieux D. Phenol Dearomatization with Hypervalent Iodine Reagents . In Hypervalent Iodine Chemistry . Wirth T. Springer International; Cham: 2016: 25-74
- 13a Braun NA, Ciufolini MA, Peters K, Peter E.-M. Tetrahedron Lett. 1998; 39: 4667
- 13b Yu W, Yu Z, Ju X, Wang J. Synthesis 2011; 860
- 14 Kita Y, Takada T, Gyoten M, Tohma H, Zenk MH, Eichhorn J. J. Org. Chem. 1996; 61: 5857
- 15 Baxendale IR, Ley SV. Ind. Eng. Chem. Res. 2005; 44: 8588
- 16 Ding H, DeRoy PL, Perreault C, Larivee A, Siddiqui A, Caldwell CG, Harran S, Harran PG. Angew. Chem. Int. Ed. 2015; 54: 4818
- 17 Donaire-Arias A, Montagut AM, Puig de la Bellacasa R, Estrada-Tejedor R, Teixido J, Borrell JI. Molecules 2022; 27: 2237
- 18 Li J, Duan XY, Ren X, Li Y, Qi J. J. Org. Chem. 2023; 88: 16621
- 19 Chatterjee A, Murmu C, Peruncheralathan S. Org. Biomol. Chem. 2020; 18: 6571