neuroreha 2024; 16(04): 161-166
DOI: 10.1055/a-2387-0791
Schwerpunkt

Roboterassistiertes und mechanisiertes Gehtraining nach Schlaganfall

Jan Mehrholz
,
Bernhard Elsner

Zur Verbesserung der Gehfähigkeit nach einem Schlaganfall gibt es derzeit eine Reihe neuer und neu entwickelter robotergestützter Geräte. Im Folgenden werden einige davon, die auch in randomisierten kontrollierten Studien eingesetzt und auf ihre Wirksamkeit hin untersucht wurden, vorgestellt.



Publikationsverlauf

Artikel online veröffentlicht:
02. Dezember 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: A systematic review comparing endeffector and exoskeleton devices. J Rehabil Med 2012; 44: 193-199
  • 2 Mehrholz J, Kugler J, Pohl M. et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2024: CD006185 unter Begutachtung
  • 3 Jayaraman A, O'Brien MK, Madhavan S. et al. Stride management assist exoskeleton vs functional gait training in stroke: A randomized trial. Neurology 2019; 92: e263-e273
  • 4 Li DX, Zha FB, Long JJ. et al. Effect of robot assisted gait training on motor and walking function in patients with subacute stroke: A random controlled study. J Stroke Cerebrovasc Dis 2021; 30: 105807
  • 5 Lee J, Kim DY, Lee SH. et al. End-effector lower limb robot-assisted gait training effects in subacute stroke patients: A randomized controlled pilot trial. Medicine (Baltimore) 2023; 102: e35568
  • 6 Ogino T, Kanata Y, Uegaki R. et al. Effects of gait exercise assist robot (GEAR) on subjects with chronic stroke: A randomized controlled pilot trial. J Stroke Cerebrovasc Dis 2020; 29: 104886
  • 7 Kang CJ, Chun MH, Lee J. et al. Effects of robot (SUBAR)-assisted gait training in patients with chronic stroke: Randomized controlled trial. Medicine (Baltimore) 2021; 100: e27974
  • 8 Kooncumchoo P, Namdaeng P, Hanmanop S. et al. Gait improvement in chronic stroke survivors by using an innovative gait training machine: A randomized controlled trial. International Journal of Environmental Research and Public Health 2021; 19
  • 9 Lee J, Chun MH, Seo YJ. et al. Effects of a lower limb rehabilitation robot with various training modes in patients with stroke: A randomized controlled trial. Medicine (Baltimore) 2022; 101: e31590
  • 10 Lin YN, Huang SW, Kuan YC. et al. Hybrid robot-assisted gait training for motor function in subacute stroke: A single-blind randomized controlled trial. J Neuroeng Rehabil 2022; 19: 99
  • 11 Miyagawa D, Matsushima A, Maruyama Y. et al. Gait training with a wearable powered robot during stroke rehabilitation: A randomized parallel-group trial. J Neuroeng Rehabil 2023; 20: 54
  • 12 Molteni F, Guanziroli E, Goffredo M. et al. Gait recovery with an overground powered exoskeleton: A randomized controlled trial on subacute stroke subjects. Brain Sciences 2021; 11
  • 13 Nam YG, Park JW, Lee HJ. et al. Further effects of electromechanically assisted gait trainer (Exowalk®) in patients with chronic stroke: A randomized controlled trial. Journal of Rehabilitation Medicine 2020; 52: jrm00097
  • 14 Park C, Oh-Park M, Dohle C. et al. Effects of innovative hip-knee-ankle interlimb coordinated robot training on ambulation, cardiopulmonary function, depression, and fall confidence in acute hemiplegia. NeuroRehabilitation 2020; 46: 577-587
  • 15 Picelli A, Bacciga M, Melotti C. et al. Combined effects of robot-assisted gait training and botulinum toxin type A on spastic equinus foot in patients with chronic stroke: A pilot, single blind, randomized controlled trial. Eur J Phys Rehabil Med 2016; 52: 759-766
  • 16 Palmcrantz S, Wall A, Vreede KS. et al. Impact of intensive gait training with and without electromechanical assistance in the chronic phase after stroke: A multi-arm randomized controlled trial with a 6 and 12 months follow-up. Front Neurosci 2021; 15: 660726
  • 17 Stolz R, Nayyar R, Louie J. et al. The effectiveness of a novel cable-driven gait trainer (Robowalk) combined with conventional physiotherapy compared to conventional physiotherapy alone following stroke: A randomised controlled trial. Int J Rehab Res 2019; 42: 377-384
  • 18 Thimabut N, Yotnuengnit P, Charoenlimprasert J. et al. Effects of the robot-assisted gait training device plus physiotherapy in improving ambulatory functions in patients with subacute stroke with hemiplegia: An assessor-blinded, randomized controlled trial. Archives of Physical Medicine and Rehabilitation 2022; 103: 843-850
  • 19 Watanabe H, Goto R, Tanaka N. et al. Effects of gait training using the Hybrid Assistive Limb(R) in recovery-phase stroke patients: A 2-month follow-up, randomized, controlled study. NeuroRehabilitation 2017; 40: 363-367
  • 20 Wright A, Stone K, Martinelli L. et al. Effect of combined home-based, overground robotic-assisted gait training and usual physiotherapy on clinical functional outcomes in people with chronic stroke: A randomized controlled trial. Clin Rehabil 2021; 35: 882-893
  • 21 Xie R, Zhang Y, Jin H. et al. Effects of soft robotic exoskeleton for gait training on clinical and biomechanical gait outcomes in patients with sub-acute stroke: A randomized controlled pilot study. Front Neurol 2023; 14: 1296102
  • 22 Yeung LF, Ockenfeld C, Pang MK. et al. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis. J Neuroeng Rehabil 2018; 15: 51
  • 23 Yokota C, Tanaka K, Omae K. et al. Effect of cyborg-type robot hybrid assistive limb on patients with severe walking disability in acute stroke: A randomized controlled study. J Stroke Cerebrovasc Dis 2023; 32: 107020
  • 24 Yoo HJ, Bae CR, Jeong H. et al. Clinical efficacy of overground powered exoskeleton for gait training in patients with subacute stroke: A randomized controlled pilot trial. Medicine (Baltimore) 2023; 102: e32761
  • 25 Yu D, Yang Z, Lei L. et al. Robot-assisted gait training plan for patients in poststroke recovery period: A single-blind randomized controlled trial. Biomed Res Int 2021; 2021: 5820304
  • 26 Zhang H, Li X, Gong Y. et al. Three-dimensional gait analysis and sEMG measures for robotic-assisted gait training in subacute stroke: A randomized controlled trial. Biomed Res Int 2023; 2023: 7563802
  • 27 Gorsler et al. 2024, im Peer Review
  • 28 Mehrholz J, Kugler J, Pohl M. et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2024: CD006185
  • 29 Hesse S, Mehrholz J, Werner C. Roboter- und gerätegestützte Rehabilitation nach Schlaganfall: Gehen und Arm-/Handfunktion. Deutsches Ärzteblatt 2008; 105: 330-336
  • 30 Colombo G, Joerg M, Schreier R. et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 2000; 37: 693-700
  • 31 Mehrholz J, Kugler J, Elsner B. Systematische Übersichtsarbeit mit Netzwerkmetaanalyse zu randomisierten und kontrollierten Studien zur Verbesserung der Gehfähigkeit nach Schlaganfall. Dtsch Arztebl Int 2018; 115: 639-645
  • 32 Mehrholz J, Thomas S, Kugler J. et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2020; 10: CD006185
  • 33 Werner C, Von Frankenberg S, Treig T. et al. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: A randomized crossover study. Stroke 2002; 33: 2895-2901
  • 34 Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Systematic Reviews 2017;
  • 35 Mehrholz J, Pohl M, Kugler J. et al. Verbesserung der Gehfähigkeit nach Schlaganfall. Dtsch Arztebl International 2018; 115: 639-645
  • 36 Hornby TG, Henderson CE, Plawecki A. et al. Contributions of stepping intensity and variability to mobility in individuals poststroke. Stroke 2019; 50: 2492-2499
  • 37 Nave AH, Rackoll T, Grittner U. et al. Physical fitness training in patients with subacute stroke (PHYS-STROKE): Multicentre, randomised controlled, endpoint blinded trial. BMJ 2019; 366: l5101
  • 38 Henderson CE, Plawecki A, Lucas E. et al. Increasing the amount and intensity of stepping training during inpatient stroke rehabilitation improves locomotor and non-locomotor outcomes. Neurorehabil Neural Repair 2022;