Subscribe to RSS
DOI: 10.1055/a-2399-0191
Precision Medicine in Angelman Syndrome
![](https://www.thieme-connect.de/media/neuropediatrics/EFirst/lookinside/thumbnails/10-1055-a-2399-0191_0620243808ra-1.jpg)
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder caused by a loss of function of UBE3A on the maternal allele. Clinical features include severe neurodevelopmental delay, epilepsy, sleep disturbances, and behavioral disorders. Therapy currently evolves from conventional symptomatic, supportive, and antiseizure treatments toward alteration of mRNA expression, which is subject of several ongoing clinical trials.
This article will provide an overview of clinical research and therapeutic approaches on AS.
# Lena Manssen and Ilona Krey contributed equally.
Publication History
Received: 10 June 2024
Accepted: 13 August 2024
Accepted Manuscript online:
21 August 2024
Article published online:
28 September 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Williams CA, Beaudet AL, Clayton-Smith J. et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A 2006; 140 (05) 413-418
- 2 Sarimski K. Entwicklungspsychologie genetischer Syndrome, 4. Auflage, Hogrefe, Göttingen: 2014: 459-479
- 3 Thibert RL, Conant KD, Braun EK. et al. Epilepsy in Angelman syndrome: a questionnaire-based assessment of the natural history and current treatment options. Epilepsia 2009; 50 (11) 2369-2376
- 4 Margolis SS, Sell GL, Zbinden MA, Bird LM. Angelman syndrome. Neurotherapeutics 2015; 12 (03) 641-650
- 5 Duis J, Nespeca M, Summers J. et al. A multidisciplinary approach and consensus statement to establish standards of care for Angelman syndrome. Mol Genet Genomic Med 2022; 10 (03) e1843
- 6 Pelc K, Cheron G, Dan B. Behavior and neuropsychiatric manifestations in Angelman syndrome. Neuropsychiatr Dis Treat 2008; 4 (03) 577-584
- 7 Thibert RL, Larson AM, Hsieh DT, Raby AR, Thiele EA. Neurologic manifestations of Angelman syndrome. Pediatr Neurol 2013; 48 (04) 271-279
- 8 Runte M, Hüttenhofer A, Gross S, Kiefmann M, Horsthemke B, Buiting K. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 2001; 10 (23) 2687-2700
- 9 Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 2008; 17 (01) 111-118
- 10 Buiting K, Glaeser D, Beygo J. Leitlinien für die molekulare und zytogenetische Diagnostik bei Prader-Willi-Syndrom und Angelman-Syndrom; 2020 . Available at: s/guidelines/078-010l_S1_molekulare-zytogenetische-Diagnostik-Prader-Willi-Syndrom_-Angelman-Syndrom__2020_12.pdf#:~:text=Das%20f%C3%BCr%20die%20molekulargenetische%20PWS%20und%20AS%20Diagnostik%20verf%C3%BCgbare%20MS-MLPA
- 11 Saitoh S, Kubota T, Ohta T. et al. Familial Angelman syndrome caused by imprinted submicroscopic deletion encompassing GABAA receptor beta 3-subunit gene. Lancet 1992; 339 (8789) 366-367
- 12 Buiting K, Lich C, Cottrell S, Barnicoat A, Horsthemke B. A 5-kb imprinting center deletion in a family with Angelman syndrome reduces the shortest region of deletion overlap to 880 bp. Hum Genet 1999; 105 (06) 665-666
- 13 Sato K, Iwakoshi M, Shimokawa O. et al. Angelman syndrome caused by an identical familial 1,487-kb deletion. Am J Med Genet A 2007; 143A (01) 98-101
- 14 Sahoo T, del Gaudio D, German JR. et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 2008; 40 (06) 719-721
- 15 Beygo J, Grosser C, Kaya S, Mertel C, Buiting K, Horsthemke B. Common genetic variation in the Angelman syndrome imprinting centre affects the imprinting of chromosome 15. Eur J Hum Genet 2020; 28 (06) 835-839
- 16 Beygo J, Buiting K, Ramsden SC, Ellis R, Clayton-Smith J, Kanber D. Update of the EMQN/ACGS best practice guidelines for molecular analysis of Prader-Willi and Angelman syndromes. Eur J Hum Genet 2019; 27 (09) 1326-1340
- 17 Daily JL, Nash K, Jinwal U. et al. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS One 2011; 6 (12) e27221
- 18 Adhikari A, Copping NA, Beegle J. et al. Functional rescue in an Angelman syndrome model following treatment with lentivector transduced hematopoietic stem cells. Hum Mol Genet 2021; 30 (12) 1067-1083
- 19 Dindot SV, Christian S, Murphy WJ. et al; FIRE consortium, FIRE Consortium. An ASO therapy for Angelman syndrome that targets an evolutionarily conserved region at the start of the UBE3A-AS transcript. Sci Transl Med 2023; 15 (688) eabf4077
- 20 Wolter JM, Mao H, Fragola G. et al. Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA. Nature 2020; 587 (7833) 281-284
- 21 O'Geen H, Beitnere U, Garcia MS. et al. Transcriptional reprogramming restores UBE3A brain-wide and rescues behavioral phenotypes in an Angelman syndrome mouse model. Mol Ther 2023; 31 (04) 1088-1105
- 22 Del Valle Rubido M, Wiese T, Novak P. et al. A Phase IIa Multicenter Study to Investigate the Pharmacokinetics, Safety and Pharmacodynamic Effects of Alogabat in Children and Adolescents With Angelman Syndrome Deletion Genotype; 2023 . Available at: file:///C:/Users/user/Downloads/ASF-2023-presentation-murtagh-a-phase-IIa-multicenter-study%20(3).pdf
- 23 Jones N. Clinical Development Update: NNZ-2591 as a Treatment for Angelman Syndrome; 2023 . Available at: https://cureangelman.org.uk/library/conferences/2023-fast-science-summit/clinical-development-update-nnz-2591-as-a-treatment-for-angelman-syndrome/
- 24 Biffi A, Montini E, Lorioli L. et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013; 341 (6148) 1233158
- 25 Eichler F, Duncan C, Musolino PL. et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med 2017; 377 (17) 1630-1638
- 26 Markati T, Duis J, Servais L. Therapies in preclinical and clinical development for Angelman syndrome. Expert Opin Investig Drugs 2021; 30 (07) 709-720
- 27 Quemener AM, Bachelot L, Forestier A, Donnou-Fournet E, Gilot D, Galibert M-D. The powerful world of antisense oligonucleotides: from bench to bedside. Wiley Interdiscip Rev RNA 2020; 11 (05) e1594
- 28 Amanat M, Nemeth CL, Fine AS, Leung DG, Fatemi A. Antisense oligonucleotide therapy for the nervous system: from bench to bedside with emphasis on pediatric neurology. Pharmaceutics 2022; 14 (11) 2389
- 29 Dhuri K, Bechtold C, Quijano E. et al. Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med 2020; 9 (06) 2004
- 30 Elgersma Y, Sonzogni M. UBE3A reinstatement as a disease-modifying therapy for Angelman syndrome. Dev Med Child Neurol 2021; 63 (07) 802-807
- 31 Chamberlain SJ, Chen P-F, Ng KY. et al. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A 2010; 107 (41) 17668-17673
- 32 Fink JJ, Robinson TM, Germain ND. et al. Disrupted neuronal maturation in Angelman syndrome-derived induced pluripotent stem cells. Nat Commun 2017; 8: 15038
- 33 Lee D, Chen W, Kaku HN. et al. Antisense oligonucleotide therapy rescues disturbed brain rhythms and sleep in juvenile and adult mouse models of Angelman syndrome. eLife 2023; 12: 12
- 34 Milazzo C, Mientjes EJ, Wallaard I. et al. Antisense oligonucleotide treatment rescues UBE3A expression and multiple phenotypes of an Angelman syndrome mouse model. JCI Insight 2021; 6 (15) e145991
- 35 Rotaru DC, Mientjes EJ, Elgersma Y. Angelman syndrome: from mouse models to therapy. Neuroscience 2020; 445: 172-189
- 36 Sonzogni M, Zhai P, Mientjes EJ, van Woerden GM, Elgersma Y. Assessing the requirements of prenatal UBE3A expression for rescue of behavioral phenotypes in a mouse model for Angelman syndrome. Mol Autism 2020; 11 (01) 70
- 37 Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 2015; 518 (7539) 409-412
- 38 Ultragenyx Pharmaceutical Inc. A Study of the Safety and Tolerability of GTX-102 in Children With Angelman Syndrome: NCT04259281, GTX-102–001|2021–001793–36. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT04259281
- 39 Ionis Pharmaceuticals, Inc. |Biogen. HALOS: A Safety, Tolerability, Pharmacokinetics and Pharmacodynamics Study of Multiple Ascending Doses of ION582 in Participants With Angelman Syndrome: NCT05127226, ION582–CS1|2021–003009–23. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT05127226
- 40 Hoffmann-La Roche. A Study To Investigate The Safety, Tolerability, Pharmacokinetics And Pharmacodynamics Of RO7248824 In Participants With Angelman Syndrome: NCT04428281, BP41674|2019–003787–48|RG6091. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT04428281
- 41 Schmid RS, Deng X, Panikker P, Msackyi M, Breton C, Wilson JM. CRISPR/Cas9 directed to the Ube3a antisense transcript improves Angelman syndrome phenotype in mice. J Clin Invest 2021; 131 (05) e142574
- 42 Bailus BJ, Pyles B, McAlister MM. et al. Protein delivery of an artificial transcription factor restores widespread Ube3a expression in an angelman syndrome mouse brain. Mol Ther 2016; 24 (03) 548-555
- 43 Deng P, Halmai JANM, Beitnere U. et al. An in vivo cell-based delivery platform for zinc finger artificial transcription factors in pre-clinical animal models. Front Mol Neurosci 2022; 14: 789913
- 44 Jacob TC. Neurobiology and therapeutic potential of α5-GABA type A receptors. Front Mol Neurosci 2019; 12: 179
- 45 Butler KM, Moody OA, Schuler E. et al. De novo variants in GABRA2 and GABRA5 alter receptor function and contribute to early-onset epilepsy. Brain 2018; 141 (08) 2392-2405
- 46 Boonsimma P, Suwannachote S, Phokaew C, Ittiwut C, Suphapeetiporn K, Shotelersuk V. A case of GABRA5-related developmental and epileptic encephalopathy with response to a combination of antiepileptic drugs and a GABAering agent. Brain Dev 2020; 42 (07) 546-550
- 47 Bindels-de Heus KGCB, Mous SE, Ten Hooven-Radstaake M. et al; ENCORE Expertise Center for AS. An overview of health issues and development in a large clinical cohort of children with Angelman syndrome. Am J Med Genet A 2020; 182 (01) 53-63
- 48 Keute M, Miller MT, Krishnan ML. et al. Angelman syndrome genotypes manifest varying degrees of clinical severity and developmental impairment. Mol Psychiatry 2021; 26 (07) 3625-3633
- 49 Roden WH, Peugh LD, Jansen LA. Altered GABA(A) receptor subunit expression and pharmacology in human Angelman syndrome cortex. Neurosci Lett 2010; 483 (03) 167-172
- 50 Hoffmann-La Roche. Study to Investigate the Pharmacokinetics and Safety and to Provide Proof of Mechanism of Alogabat in Children and Adolescents Aged 5–17 Years With Angelman Syndrome (AS) With Deletion Genotype: NCT05630066, BP41315|2022–501844–14–00. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT05630066
- 51 Guan J, Harris P, Brimble M. et al. The role for IGF-1-derived small neuropeptides as a therapeutic target for neurological disorders. Expert Opin Ther Targets 2015; 19 (06) 785-793
- 52 Cruz E, Descalzi G, Steinmetz A, Scharfman HE, Katzman A, Alberini CM. CIM6P/IGF-2 receptor ligands reverse deficits in Angelman syndrome model mice. Autism Res 2021; 14 (01) 29-45
- 53 Neuren Pharmaceuticals Limited. An Open-Label Study of the Safety, Tolerability, and Pharmacokinetics of Oral NNZ-2591 in Angelman Syndrome: NCT05011851, NEU-2591-AS-001. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT05011851
- 54 Cassater D, Bustamante M, Sach-Peltason L. et al. Clinical characterization of epilepsy in children with Angelman syndrome. Pediatr Neurol 2021; 124: 42-50
- 55 Keary CJ, McDougle CJ. Current and emerging treatment options for Angelman syndrome. Expert Rev Neurother 2023; 23 (09) 835-844
- 56 Grocott OR, Herrington KS, Pfeifer HH, Thiele EA, Thibert RL. Low glycemic index treatment for seizure control in Angelman syndrome: a case series from the Center for Dietary Therapy of Epilepsy at the Massachusetts General Hospital. Epilepsy Behav 2017; 68: 45-50
- 57 Carson RP, Herber DL, Pan Z. et al. Nutritional formulation for patients with Angelman syndrome: a randomized, double-blind, placebo-controlled study of exogenous ketones. J Nutr 2021; 151 (12) 3628-3636
- 58 Ciarlone SL, Grieco JC, D'Agostino DP, Weeber EJ. Ketone ester supplementation attenuates seizure activity, and improves behavior and hippocampal synaptic plasticity in an Angelman syndrome mouse model. Neurobiol Dis 2016; 96: 38-46
- 59 University of Colorado. Denver. Nutritional Formulation for Angelman Syndrome: NCT03644693, 20–0366. Accessed August 29, 2024: https://classic.clinicaltrials.gov/show/NCT03644693
- 60 Ripps H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis 2012; 18: 2673-2686
- 61 Reyes-Haro D, Cabrera-Ruíz E, Estrada-Mondragón A, Miledi R, Martínez-Torres A. Modulation of GABA-A receptors of astrocytes and STC-1 cells by taurine structural analogs. Amino Acids 2014; 46 (11) 2587-2593
- 62 Guzzetti S, Calzari L, Buccarello L. et al. Taurine administration recovers motor and learning deficits in an Angelman syndrome mouse model. Int J Mol Sci 2018; 19 (04) 1088
- 63 Jangra A, Gola P, Singh J. et al. Emergence of taurine as a therapeutic agent for neurological disorders. Neural Regen Res 2024; 19 (01) 62-68
- 64 Guizhou Provincial People's Hospital. Study on the Treatment of Taurine in Children With Autism: NCT05980520, 20230702. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT05980520
- 65 Bryant J-P, Levy A, Heiss J, Banasavadi-Siddegowda YK. Review of PP2A tumor biology and antitumor effects of PP2A inhibitor LB100 in the nervous system. Cancers (Basel) 2021; 13 (12) 3087
- 66 Wang J, Lou S-S, Wang T. et al. UBE3A-mediated PTPA ubiquitination and degradation regulate PP2A activity and dendritic spine morphology. Proc Natl Acad Sci U S A 2019; 116 (25) 12500-12505
- 67 National Cancer Institute (NCI)|National Institutes of Health Clinical Center (CC). Protein Phosphatase 2A Inhibitor, in Recurrent Glioblastoma: NCT03027388, 170037|17-C-0037. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT03027388
- 68 McIntyre RS, Johe K, Rong C, Lee Y. The neurogenic compound, NSI-189 phosphate: a novel multi-domain treatment capable of pro-cognitive and antidepressant effects. Expert Opin Investig Drugs 2017; 26 (06) 767-770
- 69 Liu Y, Johe K, Sun J. et al. Enhancement of synaptic plasticity and reversal of impairments in motor and cognitive functions in a mouse model of Angelman Syndrome by a small neurogenic molecule, NSI-189. Neuropharmacology 2019; 144: 337-344
- 70 Papakostas GI, Johe K, Hand H. et al. A phase 2, double-blind, placebo-controlled study of NSI-189 phosphate, a neurogenic compound, among outpatients with major depressive disorder. Mol Psychiatry 2020; 25 (07) 1569-1579
- 71 Johe KK, Kay G, Kumar S. et al. NSI-189 phosphate, a novel neurogenic compound, selectively benefits moderately depressed patients: a post-hoc analysis of a phase 2 study of major depressive disorder. Ann Clin Psychiatry 2020; 32 (03) 182-196
- 72 Neuralstem Inc. Study of NSI-189 for Major Depressive Disorder: NCT02695472, NS2014–1. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT02695472
- 73 Gupta VK, You Y, Gupta VB, Klistorner A, Graham SL. TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 2013; 14 (05) 10122-10142
- 74 Cao C, Rioult-Pedotti MS, Migani P. et al. Impairment of TrkB-PSD-95 signaling in Angelman syndrome. PLoS Biol 2013; 11 (02) e1001478
- 75 Lau KA, Yang X, Rioult-Pedotti MS. et al. A PSD-95 peptidomimetic mitigates neurological deficits in a mouse model of Angelman syndrome. Prog Neurobiol 2023; 230: 102513
- 76 Romero LO, Caires R, Kaitlyn Victor A. et al. Linoleic acid improves PIEZO2 dysfunction in a mouse model of Angelman Syndrome. Nat Commun 2023; 14 (01) 1167
- 77 Romero LO, Massey AE, Mata-Daboin AD. et al. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat Commun 2019; 10 (01) 1200
- 78 Löscher W, Kaila K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology 2022; 205: 108910
- 79 Ben-Ari Y. NKCC1 chloride importer antagonists attenuate many neurological and psychiatric disorders. Trends Neurosci 2017; 40 (09) 536-554
- 80 Egawa K, Watanabe M, Shiraishi H. et al. Imbalanced expression of cation-chloride cotransporters as a potential therapeutic target in an Angelman syndrome mouse model. Sci Rep 2023; 13 (01) 5685
- 81 Savardi A, Borgogno M, De Vivo M, Cancedda L. Pharmacological tools to target NKCC1 in brain disorders. Trends Pharmacol Sci 2021; 42 (12) 1009-1034
- 82 Egawa K, Kitagawa K, Inoue K. et al. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome. Sci Transl Med 2012; 4 (163) 163ra157
- 83 Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW. Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci 2009; 29 (41) 12757-12763
- 84 Bird LM, Ochoa-Lubinoff C, Tan W-H. et al. The STARS phase 2 study: a randomized controlled trial of gaboxadol in Angelman syndrome. Neurology 2021; 96 (07) e1024-e1035
- 85 Ovid Therapeutics Inc. A Study in Adults and Adolescents With Angelman Syndrome (STARS): NCT02996305, OV101–15–001. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT02996305
- 86 Keary C, Bird LM, de Wit M-C. et al. Gaboxadol in angelman syndrome: a double-blind, parallel-group, randomized placebo-controlled phase 3 study. Eur J Paediatr Neurol 2023; 47: 6-12
- 87 Ovid Therapeutics Inc. A Study of OV101 in Individuals With Angelman Syndrome (AS): NCT04106557, OV101–19–001. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT04106557
- 88 Ovid Therapeutics Inc. An Open-Label Study to Evaluate the Long-Term Safety, Tolerability, and Efficacy of OV101 in Individuals With Angelman Syndrome: NCT03882918, OV101–18–002. Accessed August 29 2024 at: https://classic.clinicaltrials.gov/show/NCT03882918
- 89 Peters SU, Bird LM, Kimonis V. et al. Double-blind therapeutic trial in Angelman syndrome using betaine and folic acid. Am J Med Genet A 2010; 152A (08) 1994-2001
- 90 Bird LM, Tan W-H, Bacino CA. et al. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet A 2011; 155A (12) 2956-2963
- 91 University of California. San Diego|Baylor College of Medicine|Rady Children's Hospital, San Diego|Boston Children's Hospital|Greenwood Genetic Center|Rare Diseases Clinical Research Network. Dietary Supplements for the Treatment of Angelman Syndrome: NCT00348933, RDCRN 5204. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT00348933
- 92 Panizzutti B, Skvarc D, Lin S. et al. Minocycline as treatment for psychiatric and neurological conditions: a systematic review and meta-analysis. Int J Mol Sci 2023; 24 (06) 5250
- 93 Ruiz-Antoran B, Sancho-López A, Cazorla-Calleja R. et al. A randomized placebo controlled clinical trial to evaluate the efficacy and safety of minocycline in patients with Angelman syndrome (A-MANECE study). Orphanet J Rare Dis 2018; 13 (01) 144
- 94 Puerta de Hierro University Hospital. Study to Evaluate the Efficacy and Safety of Minocycline in Angelman Syndrome: NCT02056665, A-MANECE. Accessed August 29, 2024 at: https://classic.clinicaltrials.gov/show/NCT02056665
- 95 Weeber EJ, Jiang Y-H, Elgersma Y. et al. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci 2003; 23 (07) 2634-2644
- 96 Tan W-H, Bird LM, Sadhwani A. et al. A randomized controlled trial of levodopa in patients with Angelman syndrome. Am J Med Genet A 2018; 176 (05) 1099-1107
- 97 Wen-Hann Tan|Rady Children's Hospital, San Diego|University of California, San Francisco|Baylor College of Medicine|Vanderbilt University Medical Center|Greenwood Genetic Center|Children's Hospital Medical Center, Cincinnati|Angelman Syndrome Foundation, Inc.|Boston Children's Hospital. A Trial of Levodopa in Angelman Syndrome: NCT01281475, 09–12–0610|3523. Available from: URL: https://classic.clinicaltrials.gov/show/NCT01281475
- 98 Tjeertes J, Bacino CA, Bichell TJ. et al. Enabling endpoint development for interventional clinical trials in individuals with Angelman syndrome: a prospective, longitudinal, observational clinical study (FREESIAS). J Neurodev Disord 2023; 15 (01) 22
- 99 Laan LA, Vein AA. Angelman syndrome: is there a characteristic EEG?. Brain Dev 2005; 27 (02) 80-87
- 100 den Bakker H, Sidorov MS, Fan Z. et al. Abnormal coherence and sleep composition in children with Angelman syndrome: a retrospective EEG study. Mol Autism 2018; 9: 32
- 101 Valente KD, Andrade JQ, Grossmann RM. et al. Angelman syndrome: difficulties in EEG pattern recognition and possible misinterpretations. Epilepsia 2003; 44 (08) 1051-1063
- 102 Sidorov MS, Deck GM, Dolatshahi M. et al. Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis. J Neurodev Disord 2017; 9: 17
- 103 Frohlich J, Miller MT, Bird LM. et al. Electrophysiological phenotype in Angelman syndrome differs between genotypes. Biol Psychiatry 2019; 85 (09) 752-759
- 104 Ostrowski LM, Spencer ER, Bird LM. et al. Delta power robustly predicts cognitive function in Angelman syndrome. Ann Clin Transl Neurol 2021; 8 (07) 1433-1445
- 105 Spencer ER, Shi W, Komorowski RW. et al. Longitudinal EEG model detects antisense oligonucleotide treatment effect and increased UBE3A in Angelman syndrome. Brain Commun 2022; 4 (03) fcac106
- 106 Kolevzon A, Ventola P, Keary CJ. et al. Development of an adapted Clinical Global Impression scale for use in Angelman syndrome. J Neurodev Disord 2021; 13 (01) 3
- 107 Ventola P, Jaeger J, Keary CJ. et al. An adapted clinical global Impression of improvement for use in Angelman syndrome: validation analyses utilizing data from the NEPTUNE study. Eur J Paediatr Neurol 2023; 47: 35-40
- 108 Reeve BB, Lucas N, Chen D. et al. Validation of the Observer-Reported Communication Ability (ORCA) measure for individuals with Rett syndrome. Eur J Paediatr Neurol 2023; 46: 74-81
- 109 Zigler CK, Lin L, McFatrich M. et al. Validation of the Observer-Reported Communication Ability (ORCA) measure for individuals with Angelman syndrome. Am J Intellect Dev Disabil 2023; 128 (03) 204-218
- 110 Varni JW, Seid M, Rode CA. The PedsQL: measurement model for the pediatric quality of life inventory. Med Care 1999; 37 (02) 126-139
- 111 Varni JW, Sherman SA, Burwinkle TM, Dickinson PE, Dixon P. The PedsQL Family Impact Module: preliminary reliability and validity. Health Qual Life Outcomes 2004; 2: 55
- 112 Varni JW, Burwinkle TM, Berrin SJ. et al. The PedsQL in pediatric cerebral palsy: reliability, validity, and sensitivity of the Generic Core Scales and Cerebral Palsy Module. Dev Med Child Neurol 2006; 48 (06) 442-449
- 113 Aman MG, Singh NN, Stewart AW, Field CJ. The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am J Ment Defic 1985; 89 (05) 485-491
- 114 Horsler K, Oliver C. The behavioural phenotype of Angelman syndrome. J Intellect Disabil Res 2006; 50 (Pt 1): 33-53
- 115 Goldstein S, Naglieri JA. eds. Encyclopedia of Child Behavior and Development. Boston, MA: Springer US; 2011
- 116 Hagenaar DA, Bindels-de Heus KGCB, Lubbers K. et al. Child characteristics associated with child quality of life and parenting stress in Angelman syndrome. J Intellect Disabil Res 2024; 68 (03) 248-263
- 117 Sadhwani A, Wheeler A, Gwaltney A. et al. Developmental skills of individuals with Angelman syndrome assessed using the Bayley-III. J Autism Dev Disord 2023; 53 (02) 720-737
- 118 Sparrow SS, Cicchetti DV, Saulnier CA. Vineland Adaptive Behaviour Scales, third edition (VABS-3). Toronto (Canada): Pearson; 2021
- 119 Gwaltney A, Potter SN, Peters SU. et al. Adaptive skills of individuals with angelman syndrome assessed using the Vineland Adaptive Behavior Scales, 2nd Edition. J Autism Dev Disord. Published online August 15, 2023
- 120 Owens JA, Spirito A, McGuinn M. The Children's Sleep Habits Questionnaire (CSHQ): psychometric properties of a survey instrument for school-aged children. Sleep 2000; 23 (08) 1043-1051
- 121 Godler DE, Ling L, Gamage D. et al. Feasibility of screening for chromosome 15 imprinting disorders in 16 579 newborns by using a novel genomic workflow. JAMA Netw Open 2022; 5 (01) e2141911
- 122 Lu X. The novel large deletion mouse model of Angelman Syndrome (AS): How can it help us in development of treatment for AS?. 2023 . Accessed August 29, 2024 at: https://www.youtube.com/watch?v=T8ngd40BkkE