Synthesis
DOI: 10.1055/a-2402-6920
short review

Synthesis of Cyclobutanes and Cyclobutenes by Strain-Release-Driven Ring-Opening of Bicyclo[1.1.0]butanes

Xuan Zhan
,
Heng-Xian He
,
Quanxin Peng
,
Jian-Jun Feng
This work was supported by the Fundamental Research Funds for the Central Universities, China.


Dedicated to Professor Hans-Ulrich Reißig on the occasion of his 75th birthday.

Abstract

Cyclobutanes and cyclobutenes exhibit intriguing structures and demonstrate significant biological activities and diverse synthetic applications. This review aims to summarize recent progress in strain-release-driven ring-opening reactions of bicyclo[1.1.0]butanes (BCBs) to synthesize these four-membered carbon rings. It outlines the strategies, regio- and stereoselectivity, the synthetic scope of reactions, and the mechanistic implications of the catalytic ring-opening process, providing a supplementary perspective to existing reviews.

1 Introduction

2 Thermally Driven Nucleophilic Ring-Opening

3 Thermally Driven Rearrangement and Isomerization Reaction

4 Light-Driven Ring-Opening

5 Transition-Metal/Lewis Acid Catalyzed Ring-Opening

6 Conclusion and Outlook



Publication History

Received: 30 July 2024

Accepted after revision: 23 August 2024

Accepted Manuscript online:
23 August 2024

Article published online:
25 September 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hui C, Liu Y, Jiang M, Wu P. Trends Chem. 2022; 4: 677
    • 1b van der Kolk MR, Janssen MA. C. H, Rutjes FP. J. T, Blanco-Ania D. ChemMedChem 2022; 17: e202200020
    • 1c Dembitsky VM. J. Nat. Med. 2008; 62: 1
    • 1d Lee F.-P, Chen Y.-C, Chen J.-J, Tsai I.-L, Chen I.-S. Helv. Chim. Acta 2004; 87: 463
    • 1e Endo Y, Ohta T, Nozoe S. Tetrahedron Lett. 1992; 33: 353
    • 1f Bernart MW, Kashman Y, Tischler M, Cardellina JH. II, Boyd MR. Tetrahedron Lett. 1993; 34: 4461
    • 2a Reißig H.-U, Werz D. Isr. J. Chem. 2016; 56: 367
    • 2b Reißig H.-U, Zimmer R. Angew. Chem. Int. Ed. 2015; 54: 5009
    • 2c Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
    • 2d Matsuo J.-i. Tetrahedron Lett. 2014; 55: 2589
    • 2e Seiser T, Saget T, Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
    • 2f Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
    • 2g Namyslo JC, Kaufmann DE. Chem. Rev. 2003; 103: 1485
    • 3a Chen J, Zhu Q, Fang H, Lu P. Chin. J. Chem. 2022; 40: 1346
    • 3b Didier D, Reiners F. Chem. Rec. 2021; 21: 1144
    • 3c Li J, Gao K, Bian M, Ding H. Org. Chem. Front. 2020; 7: 136
    • 3d Wen K.-G, Peng Y.-Y, Zeng X.-P. Org. Chem. Front. 2020; 7: 2576
    • 3e Hancock EN, Wahl JM, Brown MK. Nat. Prod. Rep. 2019; 36: 1383
    • 3f Eisold M, Baumann AN, Kiefl GM, Emmerling ST, Didier D. Chem. Eur. J. 2017; 23: 1634
    • 3g Wang M, Lu P. Org. Chem. Front. 2018; 5: 254
    • 3h Xu Y, Conner ML, Brown MK. Angew. Chem. Int. Ed. 2015; 54: 11918
    • 3i Gauvry N, Lescop C, Huet F. Eur. J. Org. Chem. 2006; 5207
    • 4a Qin H, Cai W, Wang S, Guo T, Li G, Lu H. Angew. Chem. Int. Ed. 2021; 60: 20678
    • 4b Hui C, Brieger L, Strohmann C, Antonchick AP. J. Am. Chem. Soc. 2021; 143: 18864
    • 4c Kennedy SH, Dherange BD, Berger KJ, Levin MD. Nature 2020; 593: 223
    • 5a Golfmann M, Walker JC. L. Commun. Chem. 2023; 6: 9
    • 5b Kelly CB, Milligan JA, Tilley LJ, Sodano TM. Chem. Sci. 2022; 13: 11721
    • 5c Fawcett A. Pure Appl. Chem. 2020; 92: 751
    • 5d Turkowska J, Durka J, Gryko D. Chem. Commun. 2020; 56: 5718
    • 5e Wiberg KB, Lampman GM, Ciula RP, Connor DS, Schertler P, Lavanish J. Tetrahedron 1965; 21: 2749
    • 6a Sujan-sky SJ, Ma X. Asian J. Org. Chem. 2024; e202400045
    • 6b Hu Q.-Q, Chen J, Yang Y, Yang H, Zhou L. Tetrahedron Chem. 2024; 9: 100070
    • 6c Walczak MA. A, Krainz T, Wipf P. Acc. Chem. Res. 2015; 48: 1149
    • 6d Bellotti P, Glorius F. J. Am. Chem. Soc. 2023; 145: 20716
    • 6e Cuadros S, Paut J, Anselmi E, Dagousset G, Magnier E, Dell’Amico L. Angew. Chem. Int. Ed. 2024; 63: e202317333
    • 7a Banerjee P, Biju AT. Donor–Acceptor Cyclopropanes . In Organic Synthesis . Wiley-VCH; Weinheim: 2024
    • 7b Augustin AU, Werz DB. Acc. Chem. Res. 2021; 54: 1528
    • 7c Pirenne V, Muriel B, Waser J. Chem. Rev. 2021; 121: 227
    • 7d Xia Y, Liu X, Feng X. Angew. Chem. Int. Ed. 2021; 60: 9192
    • 7e Ghosh K, Das S. Org. Biomol. Chem. 2021; 19: 965
    • 7f Ivanova OA, Trushkov IV. Chem. Rec. 2019; 19: 2189
    • 7g Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
    • 7h Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
    • 7i Novikov RA, Tomilov YV. Mendeleev Commun. 2015; 25: 1
    • 7j Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
    • 7k de Nanteuil F, De Simone F, Frei R, Benfatti F, Serrano E, Waser J. Chem. Commun. 2014; 50: 10912
    • 7l Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
    • 7m Liao S, Sun X.-L, Tang Y. Acc. Chem. Res. 2014; 47: 2260
    • 7n Mel’nikov MY, Budynina EM, Ivanova OA, Trushkov IV. Mendeleev Commun. 2011; 21: 293
    • 7o Lebold TP, Kerr MA. Pure Appl. Chem. 2010; 82: 1797
    • 7p Chagarovskiy AO, Budynina EM, Ivanova OA, Grishin YK, Trushkov IV, Verteletskii PV. Tetrahedron 2009; 65: 5385
    • 7q De Simone F, Waser J. Synthesis 2009; 3353
    • 7r Davies HM. L, Denton JR. Chem. Soc. Rev. 2009; 38: 3061
    • 7s Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 7t Agrawal D, Yadav VK. Chem. Commun. 2008; 6471
    • 7u Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 7v Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 8a Wenkert E, Alonso ME, Buckwalter BL, Chou KJ. J. Am. Chem. Soc. 1977; 99: 4778
    • 8b Piers E, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1979; 18: 791
    • 8c Reissig H.-U, Hirsch E. Angew. Chem., Int. Ed. Engl. 1980; 19: 813
  • 9 Wiberg KB, Ciula RP. J. Am. Chem. Soc. 1959; 81: 5261
    • 10a Chen K, Huang X, Kan SB. J, Zhang RK, Arnold FH. Science 2018; 360: 71
    • 10b McNamee RE, Haugland MM, Nugent J, Chan R, Christensen KE, Anderson EA. Chem. Sci. 2021; 12: 7480
    • 10c McNamee RE, Thompson AL, Anderson EA. J. Am. Chem. Soc. 2021; 143: 21246
    • 10d Jung M, Lindsay VN. G. J. Am. Chem. Soc. 2022; 144: 4764
    • 10e Sharland JC, Davies HM. L. Org. Lett. 2023; 25: 5214
    • 10f Mandler MD, Mignone J, Jurica EA, Palkowitz MD, Aulakh D, Cauley AN, Farley CA, Zhang S, Traeger SC, Sarjeant A, Paiva A, Perez HL, Ellsworth BA, Regueiro-Ren A. Org. Lett. 2023; 25: 7947
    • 10g McNamee RE, Dasgupta A, Christensen KE, Anderson EA. Org. Lett. 2024; 26: 360
    • 10h Suresh R, Orbach N, Marek I. J. Am. Chem. Soc. 2024; 146: 13748
    • 11a Tsien J, Hu C, Merchant RR, Qin T. Nat. Rev. Chem. 2024; 8: 605
    • 11b Mykhailiuk PK. Org. Biomol. Chem. 2019; 17: 2839
  • 12 Gaoni Y. Tetrahedron Lett. 1982; 23: 5215
    • 13a Hoz S, Azran C, Sella A. J. Am. Chem. Soc. 1996; 118: 5456
    • 13b Gaoni Y. Tetrahedron Lett. 1982; 23: 5219
    • 13c Gaoni Y. Tetrahedron Lett. 1988; 29: 1591
    • 13d Gaoni Y. Org. Prep. Proced. Int. 1995; 27: 185
    • 13e Gaoni Y, Tomazic A, Potgieter E. J. Org. Chem. 1985; 50: 2943
    • 13f Gaoni Y. Tetrahedron 1989; 45: 2819
    • 14a Panish R, Chintala SR, Boruta DT, Fang Y, Taylor MT, Fox JM. J. Am. Chem. Soc. 2013; 135: 9283
    • 14b Panish RA, Chintala SR, Fox JM. Angew. Chem. Int. Ed. 2016; 55: 4983
    • 15a Gianatassio R, Lopchuk JM, Wang J, Pan C.-M, Malins LR, Prieto L, Brandt TA, Collins MR, Gallego GM, Sach NW, Spangler JE, Zhu H, Zhu J, Baran PS. Science 2016; 351: 241
    • 15b Lopchuk JM, Fjelbye K, Kawamata Y, Malins LR, Pan C.-M, Gianatassio R, Wang J, Prieto L, Bradow J, Brandt TA, Collins MR, Elleraas J, Ewanicki J, Farrell W, Fadeyi OO, Gallego GM, Mousseau JJ, Oliver R, Sach NW, Smith JK, Spangler JE, Zhu H, Zhu J, Baran PS. J. Am. Chem. Soc. 2017; 139: 3209
  • 16 Milligan JA, Busacca CA, Senanayake CH, Wipf P. Org. Lett. 2016; 18: 4300
    • 17a Wu G, Lupton JR, Turner ND, Fang Y.-Z, Yang S. J. Nutr. 2004; 134: 489
    • 17b Zheng L, Cardaci S, Jerby L, MacKenzie ED, Sciacovelli M, Johnson TI, Gaude E, King A, Leach JD. G, Edrada-Ebel R, Hedley A, Morrice NA, Kalna G, Blyth K, Ruppin E, Frezza C, Gottlieb E. Nat. Commun. 2015; 6: 6001
  • 18 Zhang P, Zhuang R, Wang X, Liu H, Li J, Su X, Chen X, Zhang X. Bioconjugate Chem. 2018; 29: 467
  • 19 Schwartz BD, Zhang MY, Attard RH, Gardiner MG, Malins LR. Chem. Eur. J. 2020; 26: 2808
  • 20 Tokunaga K, Sato M, Kuwata K, Miura C, Fuchida H, Matsunaga N, Koyanagi S, Ohdo S, Shindo N, Ojida A. J. Am. Chem. Soc. 2020; 142: 18522
  • 21 Kaur A, Lin W, Dovhalyuk V, Driutti L, Di Martino ML, Vujasinovic M, Löhr JM, Sellin ME, Globisch D. Chem. Sci. 2023; 14: 5291
  • 22 Walczak MA. A, Krainz T, Wipf P. Acc. Chem. Res. 2015; 48: 1149
    • 23a Kerner MJ, Wipf P. Org. Lett. 2021; 23: 3615
    • 23b Jung M, Muir JE, Lindsay VN. G. Tetrahedron 2023; 134: 133296
    • 23c Dai R.-H, Han L, Wang Q, Tian S.-K. Chem. Commun. 2021; 57: 8449
    • 23d Bennett SH, Fawcett A, Denton EH, Biberger T, Fasano V, Winter N, Aggarwal VK. J. Am. Chem. Soc. 2020; 142: 16766
    • 23e Guo L, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2021; 60: 212
    • 23f Cairncross A, Blanchard EP. Jr. J. Am. Chem. Soc. 1966; 88: 496
    • 23g Wipf P, Walczak MA. A. Angew. Chem. Int. Ed. 2006; 45: 4172
    • 23h Ueda M, Walczak MA. A, Wipf P. Tetrahedron Lett. 2008; 49: 5986
    • 23i Pomerantz M, Abrahamson EW. J. Am. Chem. Soc. 1966; 88: 3970
    • 23j Pomerantz M, Gruber GW, Wilke RN. J. Am. Chem. Soc. 1968; 90: 5040
    • 23k Dasgupta A, Bhattacharjee S, Tong Z, Guin A, McNamee RE, Christensen KE, Biju AT, Anderson EA. J. Am. Chem. Soc. 2024; 146: 1196
    • 23l Bai D, Guo X, Wang X, Xu W, Cheng R, Wei D, Lan Y, Chang J. Nat. Commun. 2024; 15: 2833
  • 24 Gaoni Y, Tomazic A. J. Org. Chem. 1985; 50: 2948
  • 25 Tyler JL, Aggarwal VK. Chem. Eur. J. 2023; 29: e202300008
    • 26a Gassman PG. Acc. Chem. Res. 1971; 4: 128
    • 26b Blanchard EP. Jr, Cairncross A. J. Am. Chem. Soc. 1966; 88: 487
    • 26c Amey RL, Smart BE. J. Org. Chem. 1981; 46: 4090
    • 26d Schwartz BD, Smyth AP, Nashar PE, Gardiner MG, Malins LR. Org. Lett. 2022; 24: 1268
    • 26e Chang MH, Dougherty DA. J. Org. Chem. 1981; 46: 4092
    • 27a Becknell AF, Berson JA, Srinivasan R. J. Am. Chem. Soc. 1985; 107: 1076
    • 27b Livingstone K, Siebold K, Meyer S, Martín-Heras V, Daniliuc CG, Gilmour R. ACS Catal. 2022; 12: 14507
    • 27c Lin S.-L, Chen Y.-H, Liu H.-H, Xiang S.-H, Tan B. J. Am. Chem. Soc. 2023; 145: 21152
    • 28a Bellotti P, Glorius F. J. Am. Chem. Soc. 2023; 145: 20716
    • 28b Cuadros S, Paut J, Anselmi E, Dagousset G, Magnier E, Dell'Amico L. Angew. Chem. Int. Ed. 2024; 63: e202317333
    • 29a Gassman PG, Carroll GT. J. Org. Chem. 1984; 49: 2074
    • 29b Hall HK. Jr, Blanchard EP. Jr, Cherkofsky SC, Sieja JB, Sheppard WA. J. Am. Chem. Soc. 1971; 93: 110
  • 30 Pratt CJ, Aycock RA, King MD, Jui NT. J. S. Synlett 2020; 31: 51
  • 31 Ernouf G, Chirkin E, Rhyman L, Ramasami P, Cintrat J.-C. Angew. Chem. Int. Ed. 2020; 59: 2618
  • 32 Gao H, Guo L, Shi C, Zhu Y, Yang C, Xia W. Adv. Synth. Catal. 2022; 364: 2140
  • 33 Chen P.-F, Li D.-S, Ou W.-T, Xue F, Deng H.-P. Org. Lett. 2023; 25: 6184
  • 34 Yu X, Lübbesmeyer M, Studer A. Angew. Chem. Int. Ed. 2021; 60: 675
  • 35 Ociepa M, Wierzba AJ, Turkowska J, Gryko D. J. Am. Chem. Soc. 2020; 142: 5355
  • 36 Zhang Z, Gevorgyan V. J. Am. Chem. Soc. 2022; 144: 20875
  • 37 Silvi M, Aggarwal VK. J. Am. Chem. Soc. 2019; 141: 9511
  • 38 Lewis-Borrell L, Sneha M, Clark IP, Fasano V, Noble A, Aggarwal VK, Orr-Ewing AJ. J. Am. Chem. Soc. 2021; 143: 17191
    • 39a Majhi J, Dhungana RK, Rentería-Gómez Á, Sharique M, Li L, Dong W, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2022; 144: 15871
    • 39b Huang W, Zheng Y, Keess S, Molander GA. J. Am. Chem. Soc. 2023; 145: 5363
  • 40 Fan J.-H, Yuan J, Xia P.-F, Zhou J, Zhong L.-J, Huang P.-F, Liu Y, Tang K.-W, Li J.-H. Org. Lett. 2024; 26: 2073
  • 41 Das K, Pedada A, Singha T, Hari DP. Chem. Sci. 2024; 15: 3182
  • 42 Wang H, Erchinger JE, Lenz M, Dutta S, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2023; 145: 23771
  • 43 Duan Y, Xu Y, Li Y, Mao L, Feng J, Zhang R, Tang W, Lu T, Chen Y, Feng J. Green Chem. 2024; 26: 5512
  • 44 Kraemer Y, Buldt JA, Kong W.-Y, Stephens AM, Ragan AN, Park S, Haidar ZC, Patel AH, Shey R, Dagan R, McLoughlin CP, Fettinger JC, Tantillo DJ, Pitts CR. Angew. Chem. Int. Ed. 2024; 63: e202319930
  • 45 Xiao Y, Xu T.-T, Zhou J.-L, Wu F, Tang L, Liu R.-Y, Wu W.-B, Feng J.-J. Chem. Sci. 2023; 14: 13060
  • 46 Wu X, Hao W, Ye K.-Y, Jiang B, Pombar G, Song Z, Lin S. J. Am. Chem. Soc. 2018; 140: 14836
  • 47 Fawcett A, Biberger T, Aggarwal VK. Nat. Chem. 2019; 11: 117
  • 48 Wölfl B, Winter N, Li J, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2023; 62: e202217064
  • 49 Shen H.-C, Popescu MV, Wang Z.-S, de Lescure L, Noble A, Paton RS, Aggarwal VK. J. Am. Chem. Soc. 2023; 145: 16508
  • 50 Takatsuki M, Aoyama H, Murai K, Arisawa M, Sako M. Chem. Commun. 2023; 59: 7467
  • 51 Guin A, Bhattacharjee S, Harariya MS, Biju AT. Chem. Sci. 2023; 14: 6585
  • 52 Tang L, Huang Q.-N, Wu F, Xiao Y, Zhou J.-L, Xu T.-T, Wu W.-B, Qu S, Feng J.-J. Chem. Sci. 2023; 14: 9696
  • 53 Wang J.-J, Tang L, Xiao Y, Wu W.-B, Wang G, Feng J.-J. Angew. Chem. Int. Ed. 2024; 63: e202405222
  • 54 Guin A, Deswal S, Harariya MS, Biju AT. Chem. Sci. 2024; 15: 12473
  • 55 Dhake K, Woelk KJ, Becica J, Un A, Jenny SE, Leitch DC. Angew. Chem. Int. Ed. 2022; 61: e202204719