Planta Med 2024; 90(13): 992-1004
DOI: 10.1055/a-2409-2999
Biological and Pharmacological Activity
Reviews

Erigeron breviscapus: A Promising Medication for Protecting the Optic Nerve in Glaucoma

Yuxin Cheng
1   Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
2   Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
,
Xuanyi Chen
3   Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
,
Guangyu Zhu
1   Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
2   Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
,
Na Li
4   Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
,
Yue Sun
1   Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
2   Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
,
Shichun Luo
1   Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
2   Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
,
Yujie Liu
1   Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
2   Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
,
Xuejing Lu
1   Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
2   Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
› Author Affiliations
The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant No. 82 174 444).

Abstract

Glaucoma is a common eye condition characterized by the loss of retinal ganglion cells and their axons, optic nerve damage, and visual field defects, which seriously affect a patientʼs quality of life. The pathogenesis of glaucoma is still unclear at present. It presents as damage to retinal ganglion cells, and the main treatment is primarily to reduce intraocular pressure by surgery or taking medication. However, even with well-controlled intraocular pressure, retinal ganglion cells still undergo degeneration, progressive apoptosis, and axonal loss. Therefore, protecting the optic nerve and inhibiting the apoptosis of retinal ganglion cells are the current hot topic for prevention and treatment of glaucoma. Recently, Erigeron breviscapus, originating from Yunnan province in China, has been shown to be a promising herb with neuroprotective effects to treat glaucoma. Therefore, the traditional usage, botanical characteristics, and phytochemical composition of E. breviscapus were explored through a literature review. Furthermore, we have summarized the pharmacological mechanisms of E. breviscapus and its active components in inhibiting the apoptosis of retinal ganglion cells. These research findings can not only provide guidance and recommendations for the protection of retinal ganglion cells but also further explore the potential of E. breviscapus in the treatment of glaucoma.



Publication History

Received: 12 February 2024

Accepted after revision: 21 August 2024

Article published online:
20 September 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wei X, Cho KS, Thee EF, Jager MJ, Chen DF. Neuroinflammation and microglia in glaucoma: Time for a paradigm shift [published correction appears in J Neurosci Res 2019; 97: 374]. J Neurosci Res 2019; 97: 70-76
  • 2 Zhang N, Wang J, Li Y, Jiang B. Prevalence of primary open angle glaucoma in the last 20 years: A meta-analysis and systematic review. Sci Rep 2021; 11: 13762
  • 3 GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Trends in prevalence of blindness and distance and near vision impairment over 30 years: An analysis for the global burden of disease study. Lancet Glob Health 2021; 9: e130-e143
  • 4 Wang W, He M, Li Z, Huang W. Epidemiological variations and trends in health burden of glaucoma worldwide. Acta Ophthalmol 2019; 97: e349-e355
  • 5 GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The right to sight: An analysis for the global burden of disease study. Lancet Glob Health 2021; 9: e144-e160
  • 6 Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014; 121: 2081-2090
  • 7 Cheng CY, Wang N, Wong TY, Congdon N, He M, Wang YX, Braithwaite T, Casson RJ, Cicinelli MV, Das A, Flaxman SR, Jonas JB, Keeffe JE, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Resnikoff S, Silvester AJ, Tahhan N, Taylor HR, Bourne RRA. Prevalence and causes of vision loss in East Asia in 2015: Magnitude, temporal trends and projections. Br J Ophthalmol 2020; 104: 616-622
  • 8 Wang B, Leng X, An X, Zhang X, Liu X, Lu X. XEN gel implant with or without phacoemulsification for glaucoma: A systematic review and meta-analysis. Ann Transl Med 2020; 8: 1309
  • 9 Cheung W, Guo L, Cordeiro MF. Neuroprotection in glaucoma: Drug-based approaches. Optom Vis Sci 2008; 85: 406-416
  • 10 Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95: 101136
  • 11 Cholkar K, Trinh HM, Pal D, Mitra AK. Discovery of novel inhibitors for the treatment of glaucoma. Expert Opin Drug Discov 2015; 10: 293-313
  • 12 Mohan N, Chakrabarti A, Nazm N, Mehta R, Edward DP. Newer advances in medical management of glaucoma. Indian J Ophthalmol 2022; 70: 1920-1930
  • 13 Goldstein MH, Silva FQ, Blender N, Tran T, Vantipalli S. Ocular benzalkonium chloride exposure: Problems and solutions. Eye (Lond) 2022; 36: 361-368
  • 14 Arbabi A, Bao X, Shalaby WS, Razeghinejad R. Systemic side effects of glaucoma medications. Clin Exp Optom 2022; 105: 157-165
  • 15 Sim RH, Sirasanagandla SR, Das S, Teoh SL. Treatment of glaucoma with natural products and their mechanism of action: An update. Nutrients 2022; 14: 534
  • 16 He Q, Xiao L, Shi Y, Li W, Xin X. Natural products: Protective effects against ischemia-induced retinal injury. Front Pharmacol 2023; 14: 1149708
  • 17 Liu L, Sha XY, Wu YN, Chen MT, Zhong JX. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen Res 2020; 15: 1526-1531
  • 18 Mi XS, Feng Q, Lo ACY, Chang RC, Chung SK, So KF. Lycium barbarum polysaccharides related RAGE and Aβ levels in the retina of mice with acute ocular hypertension and promote maintenance of blood retinal barrier. Neural Regen Res 2020; 15: 2344-2352
  • 19 Cho HK, Kim S, Lee EJ, Kee C. Neuroprotective effect of Ginkgo Biloba extract against hypoxic retinal ganglion cell degeneration in vitro and in vivo . J Med Food 2019; 22: 771-778
  • 20 Fan H, Lin P, Kang Q, Zhao ZL, Wang J, Cheng JY. Metabolism and pharmacological mechanisms of active ingredients in Erigeron breviscapus . Curr Drug Metab 2021; 22: 24-39
  • 21 Guo X, Lin S, Wu LM, Tian XH. Progress in the study of chemical constituents and pharmacological effects of erigeron breviscapus . J Zhongchengyao 2009; 41: 393-402
  • 22 Wu R, Liang Y, Xu M, Fu K, Zhang Y, Wu L, Wang Z. Advances in chemical constituents, clinical applications, pharmacology, pharmacokinetics and toxicology of Erigeron breviscapus . Front Pharmacol 2021; 12: 656335
  • 23 Wang J, Xie Y, Zhao S, Zhang J, Chai Y, Li Y, Liao X. Dengzhanxixin injection for cerebral infarction: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2017; 96: e7674
  • 24 Liu S, Wu JR, Zhang D, Wang KH, Zhang B, Zhang XM, Tan D, Duan XJ, Cui YY, Liu XK. Comparative efficacy of Chinese herbal injections for treating acute cerebral infarction: A network meta-analysis of randomized controlled trials. BMC Complement Altern Med 2018; 18: 120
  • 25 Ju WZ, Zhao Y, Liu F, Wu T, Zhang J, Liu SJ, Zhou L, Dai GL, Xiong NN, Fang ZY. Clinical tolerability and pharmacokinetics of Erigerontis hydroxybenzene injection: Results of a randomized phase I study in healthy Chinese volunteers. Phytomedicine 2015; 22: 319-325
  • 26 Yang CD. Current situation and countermeasures of Erigeron breviscapus industry development. Yunnan Agric 2014; 02: 56-57
  • 27 Gu S, Zhou Z, Zhang S, Cai Y. Advances in anti-diabetic cognitive dysfunction effect of Erigeron breviscapus (Vaniot) Hand-Mazz. Pharmaceuticals (Basel) 2022; 16: 50
  • 28 Wang J, Zhang L, Liu B, Wang Q, Chen Y, Wang Z, Zhou J, Xiao W, Zheng C, Wang Y. Systematic investigation of the Erigeron breviscapus mechanism for treating cerebrovascular disease. J Ethnopharmacol 2018; 224: 429-440
  • 29 Dong X, Qu S. Erigeron breviscapus (Vant.) Hand-Mazz.: A Promising natural neuroprotective agent for alzheimerʼs disease. Front Pharmacol 2022; 13: 877872
  • 30 Li X. Clinical effect of Dengzhanxixin injection on patients with ischemic stroke. Chin J Gerontol 2018; 38: 3850-3851
  • 31 Jiang DP. Effects of breviscapine injection on platelet activity indexes in patients with transient ischemic attack. China Med Eng 2017; 25: 50-52
  • 32 Hou LB, Qiao LJ, Guo JW. Effect of Erigeron Breviscap US injection on VEGF-MMP-9 and EPCs in patients with acute cerebral infarction of blood stasis pattern. Chin Tradit Patent Med 2015; 37: 2373-2378
  • 33 Huang J, Su Y, Yang C, Li S, Wu Y, Chen B, Lin X, Huang L, Yao H, Shi P. An integrated pharmacokinetic study of Dengzhanxixin injection in rats by combination of multicomponent pharmacokinetics and anti-myocardial ischemic assay. RSC Adv 2019; 9: 25309-25317
  • 34 Zhao J, Lv C, Wu Q, Zeng H, Guo X, Yang J, Tian S, Zhang W. Computational systems pharmacology reveals an antiplatelet and neuroprotective mechanism of Deng-Zhan-Xi-Xin injection in the treatment of ischemic stroke. Pharmacol Res 2019; 147: 104365
  • 35 Yang L, Tao Y, Luo L, Zhang Y, Wang X, Meng X. Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. J Ethnopharmacol 2022; 288: 114988
  • 36 Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019; 176: 1248-1264
  • 37 Long L, Wang J, Lu X, Xu Y, Zheng S, Luo C, Li Y. Protective effects of scutellarin on type II diabetes mellitus-induced testicular damages related to reactive oxygen species/Bcl-2/Bax and reactive oxygen species/microcirculation/staving pathway in diabetic rat. J Diabetes Res 2015; 2015: 252530
  • 38 Long L, Li Y, Yu S, Li X, Hu Y, Long T, Wang L, Li W, Ye X, Ke Z, Xiao H. Scutellarin prevents angiogenesis in diabetic retinopathy by downregulating VEGF/ERK/FAK/Src pathway signaling. J Diabetes Res 2019; 2019: 4875421
  • 39 Wang Y, Ji M, Chen L, Wu X, Wang L. Breviscapine reduces acute lung injury induced by left heart ischemic reperfusion in rats by inhibiting the expression of ICAM-1 and IL-18. Exp Ther Med 2013; 6: 1322-1326
  • 40 Xi J, Rong Y, Zhao Z, Huang Y, Wang P, Luan H, Xing Y, Li S, Liao J, Dai Y, Liang J, Wu F. Scutellarin ameliorates high glucose-induced vascular endothelial cells injury by activating PINK1/Parkin-mediated mitophagy. J Ethnopharmacol 2021; 271: 113855
  • 41 Zhang J, Xiao F, Yang X. The biological characteristics and pharmacological function of Erigeron breviscapus . Lishizhen Med Mater Med Res 2007; 12: 2925-2926
  • 42 Yu H, Chen Z. Study on artificial culture of Erigeron breviscapus . Acta Botanica Yunnanica 2002; 01: 115-120
  • 43 Su C, Pu Y, Gao Y, Wang G, Xu L. Development status and counterplans of Erigeron breviscapus industry in Yunnan Province. Journal of Chinese Medicinal Materials 2023; 05: 1067-1074
  • 44 Jiang P, Lu Y, Chen D. Qualitative and quantitative analysis of multiple components for quality control of Deng-Zhan-Sheng-Mai capsules by ultra high-performance liquid chromatography tandem mass spectrometry method coupled with chemometrics. J Sep Sci 2017; 40: 612-624
  • 45 Guo X, Lin S, Wu LM, Tian XH. Progress in Studies on Chemical Constituents and Pharmacological Action of Erigeron Breviscapus . Chin Tradit Patent Med 2019; 41: 393-402
  • 46 Tian Y, Li Q, Zhou X, Pang Q, Xu Y. A UHPLC-MS/MS method for simultaneous determination of twelve constituents from Erigeron breviscapus extract in rat plasma: Application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1046: 1-12
  • 47 Qu J, Wang Y, Luo G, Wu Z. Identification and determination of glucuronides and their aglycones in Erigeron breviscapus by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2001; 928: 155-162
  • 48 Liao SG, Zhang LJ, Li CB, Lan YY, Wang AM, Huang Y, Zhen L, Fu XZ, Zhou W, Qi XL, Guan ZZ, Wang YL. Rapid screening and identification of caffeic acid and its esters in Erigeron breviscapus by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2010; 24: 2533-2541
  • 49 Wen L, He T, Yu A, Sun S, Li X, Wei J, Song R, Yan X, Li R, Ren X, Wang Y, Liu X, Dong Y, Fu X, She G. Breviscapine: A review on its phytochemistry, pharmacokinetics and therapeutic effects. Am J Chin Med 2021; 49: 1369-1397
  • 50 Li XB, Wang RB, Shen Y, Meng ZG, Chen JW, Yang JW, Yang SC. [Simultaneous determination of chlorogenic acid, scutellarin, 3, 5-dicaffeoylquinic acid, 4, 5-dicaffeoylquinic acid in different parts of Erigeron breviscapus by high-performance liquid chromatography]. Zhongguo Zhong Yao Za Zhi 2013; 38: 2237-2240
  • 51 Chen B, Li BG, Zhang GL. A new sesquiterpene glucoside from Erigeron breviscapus . Nat Prod Res 2003; 17: 37-40
  • 52 Zhong Y, Xiang M, Ye W, Cheng Y, Jiang Y. Visual field protective effect of Erigeron breviscapus (vant.) Hand. Mazz. extract on glaucoma with controlled intraocular pressure: a randomized, double-blind, clinical trial. Drugs R D 2010; 10: 75-82
  • 53 Shen J, Wang Y, Yao K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp Eye Res 2021; 205: 108506
  • 54 Vishwaraj CR, Kavitha S, Venkatesh R, Shukla AG, Chandran P, Tripathi S. Neuroprotection in glaucoma. Indian J Ophthalmol 2022; 70: 380-385
  • 55 Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92: 101193
  • 56 Yang Y, Sun X. Retinal ganglion cell death in glaucoma: Advances and caveats. Curr Eye Res 2023; 48: 1-10
  • 57 Vernazza S, Oddone F, Tirendi S, Bassi AM. Risk factors for retinal ganglion cell distress in glaucoma and neuroprotective potential intervention. Int J Mol Sci 2021; 22: 7994
  • 58 Yuan F, Wang M, Jin K, Xiang M. Advances in regeneration of retinal ganglion cells and optic nerves. Int J Mol Sci 2021; 22: 4616
  • 59 Zhao WJ, Fan CL, Hu XM, Ban XX, Wan H, He Y, Zhang Q, Xiong K. Regulated cell death of retinal ganglion cells in glaucoma: Molecular insights and therapeutic potentials. Cell Mol Neurobiol 2023; 43: 3161-3178
  • 60 You P, Fu S, Yu K, Xia Y, Wu H, Yang Y, Ma C, Liu D, Chen X, Wang J, Ye X, Liu Y. Scutellarin suppresses neuroinflammation via the inhibition of the AKT/NF-κB and p 38/JNK pathway in LPS-induced BV-2 microglial cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391: 743-751
  • 61 Zhu Y, Jiang Y, Liu Z, Luo X, Wu Z. [The affect of Erigeron Breviscapus (Vant.) Hand-Mazz on axoplasmic transport of optic nerve in rats with experimentally elevated intraocular pressure]. Zhonghua Yan Ke Za Zhi 2000; 36: 289-318
  • 62 Arikan S, Ersan I, Karaca T, Gencer B, Karaboga I, Hasan Ali T. Quercetin protects the retina by reducing apoptosis due to ischemia-reperfusion injury in a rat model. Arq Bras Oftalmol 2015; 78: 100-104
  • 63 Zhou X, Li G, Yang B, Wu J. Quercetin enhances inhibitory synaptic inputs and reduces excitatory synaptic inputs to OFF- and ON-type retinal ganglion cells in a chronic glaucoma rat model. Front Neurosci 2019; 13: 672
  • 64 Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 2006; 25: 490-513
  • 65 Yu DY, Cringle SJ, Balaratnasingam C, Morgan WH, Yu PK, Su EN. Retinal ganglion cells: Energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res 2013; 36: 217-246
  • 66 Ji LL, Yeo D. Oxidative stress: An evolving definition. Fac Rev 2021; 10: 13
  • 67 Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68: 102967
  • 68 Jung SH, Kang KD, Ji D, Fawcett RJ, Safa R, Kamalden TA, Osborne NN. The flavonoid baicalin counteracts ischemic and oxidative insults to retinal cells and lipid peroxidation to brain membranes. Neurochem Int 2008; 53: 325-337
  • 69 Gong L, Zhu J. Baicalin alleviates oxidative stress damage in trabecular meshwork cells in vitro . Naunyn Schmiedebergs Arch Pharmacol 2018; 391: 51-58
  • 70 Nakayama M, Aihara M, Chen YN, Araie M, Tomita-Yokotani K, Iwashina T. Neuroprotective effects of flavonoids on hypoxia-, glutamate-, and oxidative stress-induced retinal ganglion cell death. Mol Vis 2011; 17: 1784-1793
  • 71 Aharoni-Simon M, Ben-Yaakov K, Sharvit-Bader M, Raz D, Haim Y, Ghannam W, Porat N, Leiba H, Marcovich A, Eisenberg-Lerner A, Rotfogel Z. Oxidative stress facilitates exogenous mitochondria internalization and survival in retinal ganglion precursor-like cells. Sci Rep 2022; 12: 5122
  • 72 Zhao L, Ling L, Lu J, Jiang F, Sun J, Zhang Z, Huang Y, Liu X, Zhu Y, Fu X, Peng S, Yuan W, Zhao R, Zhang Z. Reactive oxygen species-responsive mitochondria-targeted liposomal quercetin attenuates retinal ischemia-reperfusion injury via regulating SIRT1/FOXO3A and p 38 MAPK signaling pathways. Bioeng Transl Med 2022; 8: e10460
  • 73 Gao FJ, Zhang SH, Xu P, Yang BQ, Zhang R, Cheng Y, Zhou XJ, Huang WJ, Wang M, Chen JY, Sun XH, Wu JH. Quercetin declines apoptosis, ameliorates mitochondrial function and improves retinal ganglion cell survival and function in in vivo model of glaucoma in rat and retinal ganglion cell culture in vitro . Front Mol Neurosci 2017; 10: 285
  • 74 Jiang SM, Zeng LP, Zeng JH, Tang L, Chen XM, Wei X. β-III-Tubulin: A reliable marker for retinal ganglion cell labeling in experimental models of glaucoma. Int J Ophthalmol 2015; 8: 643-652
  • 75 Miyamoto N, Izumi H, Miyamoto R, Kondo H, Tawara A, Sasaguri Y, Kohno K. Quercetin induces the expression of peroxiredoxins 3 and 5 via the Nrf2/NRF1 transcription pathway. Invest Ophthalmol Vis Sci 2011; 52: 1055-1063
  • 76 Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154: 204-219
  • 77 Quaranta L, Bruttini C, Micheletti E, Konstas AGP, Michelessi M, Oddone F, Katsanos A, Sbardella D, De Angelis G, Riva I. Glaucoma and neuroinflammation: An overview. Surv Ophthalmol 2021; 66: 693-713
  • 78 Sapienza A, Raveu AL, Reboussin E, Roubeix C, Boucher C, Dégardin J, Godefroy D, Rostène W, Reaux-Le Goazigo A, Baudouin C, Melik Parsadaniantz S. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat. J Neuroinflammation 2016; 13: 44
  • 79 Hernandez MR, Miao H, Lukas T. Astrocytes in glaucomatous optic neuropathy. Prog Brain Res 2008; 173: 353-373
  • 80 Shinozaki Y, Koizumi S. Potential roles of astrocytes and Müller cells in the pathogenesis of glaucoma. J Pharmacol Sci 2021; 145: 262-267
  • 81 Evangelho K, Mogilevskaya M, Losada-Barragan M, Vargas-Sanchez JK. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: A review of the literature. Int Ophthalmol 2019; 39: 259-271
  • 82 Liu M, Li H, Yang R, Ji D, Xia X. GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1/RIP3/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma. J Neuroinflammation 2022; 19: 262
  • 83 Zhu J, Chen L, Qi Y, Feng J, Zhu L, Bai Y, Wu H. Protective effects of Erigeron breviscapus Hand.-Mazz. (EBHM) extract in retinal neurodegeneration models. Mol Vis 2018; 24: 315-325
  • 84 Zhu J, Sainulabdeen A, Akers K, Adi V, Sims JR, Yarsky E, Yan Y, Yu Y, Ishikawa H, Leung CK, Wollstein G, Schuman JS, Wei W, Chan KC. Oral scutellarin treatment ameliorates retinal thinning and visual deficits in experimental glaucoma. Front Med (Lausanne) 2021; 8: 681169
  • 85 Durán-Cristiano SC. Glaucoma: biological mechanism and its clinical translation. Curr Mol Med 2023; 23: 479-491
  • 86 Opere CA, Heruye S, Njie-Mbye YF, Ohia SE, Sharif NA. Regulation of excitatory amino acid transmission in the retina: Studies on neuroprotection. J Ocul Pharmacol Ther 2018; 34: 107-118
  • 87 Boccuni I, Fairless R. Retinal glutamate neurotransmission: From Physiology to pathophysiological mechanisms of retinal ganglion cell degeneration. Life (Basel) 2022; 12: 638
  • 88 Christensen I, Lu B, Yang N, Huang K, Wang P, Tian N. The susceptibility of retinal ganglion cells to glutamatergic excitotoxicity is type-specific. Front Neurosci 2019; 13: 219
  • 89 Zhao N, Shi J, Xu H, Luo Q, Li Q, Liu M. Baicalin suppresses glaucoma pathogenesis by regulating the PI3K/AKT signaling in vitro and in vivo . Bioengineered 2021; 12: 10187-10198
  • 90 Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 2019; 8: 184
  • 91 Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney jr. WE, Akil H, Watson SJ, Jones EG. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci U S A 2005; 102: 15653-15658
  • 92 Boal AM, McGrady NR, Holden JM, Risner ML, Calkins DJ. Retinal ganglion cells adapt to ionic stress in experimental glaucoma. Front Neurosci 2023; 17: 1142668
  • 93 Yin S, Wang ZF, Duan JG, Ji L, Lu XJ. Extraction (DSX) from Erigeron breviscapus modulates outward potassium currents in rat retinal ganglion cells. Int J Ophthalmol 2015; 8: 1101-1106
  • 94 Poling JS, Rogawski MA, Salem jr. N, Vicini S. Anandamide, an endogenous cannabinoid, inhibits Shaker-related voltage-gated K+ channels. Neuropharmacology 1996; 35: 983-991
  • 95 Simons ES, Smith MA, Dengler-Crish CM, Crish SD. Retinal ganglion cell loss and gliosis in the retinofugal projection following intravitreal exposure to amyloid-beta. Neurobiol Dis 2021; 147: 105146
  • 96 Ashok A, Singh N, Chaudhary S, Bellamkonda V, Kritikos AE, Wise AS, Rana N, McDonald D, Ayyagari R. Retinal degeneration and alzheimerʼs disease: An evolving link. Int J Mol Sci 2020; 21: 7290
  • 97 Zhang S, Zhang J, Wei D, An H, Liu W, Lai Y, Yang T, Shao W, Huang Y, Wang L, Dou F, Peng D, Zhang Z. Dengzhan Shengmai capsules and their active component scutellarin prevent cognitive decline in APP/PS1 mice by accelerating Aβ aggregation and reducing oligomers formation. Biomed Pharmacother 2020; 121: 109682
  • 98 Zeng YQ, Cui YB, Gu JH, Liang C, Zhou XF. Scutellarin mitigates Aβ-induced neurotoxicity and improves behavior impairments in AD mice. Molecules 2018; 23: 869
  • 99 Shin JW, Kweon KJ, Kim DK, Kim P, Jeon TD, Maeng S, Sohn NW. Scutellarin ameliorates learning and memory deficit via suppressing β-amyloid formation and microglial activation in rats with chronic cerebral hypoperfusion. Am J Chin Med 2018; 46: 1203-1223
  • 100 Chen J, Chen DF, Cho KS. The role of gut microbiota in glaucoma progression and other retinal diseases. Am J Pathol 2023; 193: 1662-1668
  • 101 Zhang S, Wei D, Lv S, Wang L, An H, Shao W, Wang Y, Huang Y, Peng D, Zhang Z. Scutellarin modulates the microbiota-gut-brain axis and improves cognitive impairment in APP/PS1 mice. J Alzheimers Dis 2022; 89: 955-975
  • 102 Chiasseu M, Cueva Vargas JL, Destroismaisons L, Vande Velde C, Leclerc N, Di Polo A. Tau accumulation, altered phosphorylation, and missorting promote neurodegeneration in glaucoma. J Neurosci 2016; 36: 5785-5798
  • 103 Shen XY, Luo T, Li S, Ting OY, He F, Xu J, Wang HQ. Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+-calpain-p 25-CDK5 pathway in HT22 cells. Int J Mol Med 2018; 41: 1138-1146