Subscribe to RSS
DOI: 10.1055/a-2427-9162
Aziridines as Versatile C(sp3) Precursors in Transition-Metal-Catalyzed Cross-Coupling Strategies
Abstract
Aziridines, which serve as valuable scaffolds in numerous pharmaceuticals and bioactive molecules, have emerged as highly efficient C(sp3) precursors in the realm of organic chemistry. Particularly, employing aziridines as versatile electrophiles in transition-metal-catalyzed cross-coupling has enabled precise control over the regiochemistry in the formation of new C(sp3)–C, –Si, and –B bonds. This review explores recent innovative aziridine cross-coupling approaches using Ni or Pd catalysis, highlighting initial findings of new mechanistic approaches and delineating distinct catalytic pathways.
1 Introduction
2 Aziridines Used as C(sp3) Precursors with Organometallic Reagents
2.1 Ni-Catalyzed Aziridine Cross-Coupling
2.2 Pd-Catalyzed Aziridine Cross-Coupling
3 Net-Reductive Approaches via Cross-Electrophile Coupling of Aziridines
3.1 Cross-Electrophile Coupling Using Chemical Reductants
3.2 Electrochemical Reductions in Cross-Electrophile Coupling
4 Aziridine Cross-Coupling via Metallaphotoredox Catalysis
4.1 Net-Reductive Metallaphotoredox-Catalyzed Cross-Coupling
4.2 Redox-Neutral Metallaphotoredox-Catalyzed Cross-Coupling
5 Miscellaneous
6 Conclusion and Future Outlook
Key words
aziridines - cross-coupling - transition-metal catalysis - cross-electrophile coupling - metallaphotoredox reactions - aminesPublication History
Received: 21 July 2024
Accepted after revision: 01 October 2024
Accepted Manuscript online:
06 October 2024
Article published online:
18 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Testa ML, Hajji C, Zaballos-García E, Belén García-Segovia A, Sepúlveda-Arques J. Tetrahedron: Asymmetry 2001; 12: 1369
- 2 Zhang A, Neumeyer JL, Baldessarini RJ. Chem. Rev. 2007; 107: 274
- 3 Gallardo-Godoy A, Fierro A, McLean TH, Castillo M, Cassels BK, Reyes-Parada M, Nichols DE. J. Med. Chem. 2005; 48: 2407
- 4 Lewin AH, Navarro HA, Wayne Mascarella S. Bioorg. Med. Chem. 2008; 16: 7415
- 5 Eis MJ, Ganem B. Tetrahedron Lett. 1985; 26: 1153
- 6 Onistschenko A, Buchholz B, Stamm H. Tetrahedron 1987; 43: 565
- 7 Hassner A, Kascheres A. Tetrahedron Lett. 1970; 11: 4623
- 8 Ghorai MK, Tiwari DP, Jain N. J. Org. Chem. 2013; 78: 7121
- 9 Trost BM, Osipov M, Dong G. J. Am. Chem. Soc. 2010; 132: 15800
- 10 Trost BM, Fandrick DR, Brodmann T, Stiles DT. Angew. Chem., Int. Ed. 2007; 46: 6123
- 11 Hu XE. Tetrahedron 2004; 60: 2701
- 12 Stanković S, D’Hooghe M, Catak S, Eum H, Waroquier M, Van Speybroeck V, De Kimpe N, Ha HJ. Chem. Soc. Rev. 2012; 41: 643
- 13 Singh GS, Sudheesh S, Keroletswe N. ARKIVOC 2018; (i): 50
- 14 Gleede T, Reisman L, Rieger E, Mbarushimana PC, Rupar PA, Wurm FR. Polym. Chem. 2019; 10: 3257
- 15 Lin BL, Clough CR, Hillhouse GL. J. Am. Chem. Soc. 2002; 124: 2890
- 16 Ney JE, Wolfe JP. J. Am. Chem. Soc. 2006; 128: 15415
- 17 Baldwin JE, Farthing CN, Russell AT, Schofield CJ, Spivey AC. Tetrahedron Lett. 1996; 37: 3761
- 18 Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
- 19 Michaelis DJ, Dineen TA. Tetrahedron Lett. 2009; 50: 1920
- 20 Ravn AK, Vilstrup MB. T, Noerby P, Nielsen DU, Daasbjerg K, Skrydstrup T. J. Am. Chem. Soc. 2019; 141: 11821
- 21 Huang CY, Doyle AG. J. Am. Chem. Soc. 2012; 134: 9541
- 22 Nielsen DK, Huang CY. D, Doyle AG. J. Am. Chem. Soc. 2013; 135: 13605
- 23 Jensen KL, Standley EA, Jamison TF. J. Am. Chem. Soc. 2014; 136: 11145
- 24 Huang CY, Doyle AG. J. Am. Chem. Soc. 2015; 137: 5638
- 25 Estrada JG, Williams WL, Ting SI, Doyle AG. J. Am. Chem. Soc. 2020; 142: 8928
- 26 Wolfe JP, Ney JE. Org. Lett. 2003; 5: 4607
- 27 Duda ML, Michael FE. J. Am. Chem. Soc. 2013; 135: 18347
- 28 Teh WP, Michael FE. Org. Lett. 2017; 19: 1738
- 29 Takeda Y, Kuroda A, Sameera WM. C, Morokuma K, Minakata S. Chem. Sci. 2016; 7: 6141
- 30 Takeda Y, Ikeda Y, Kuroda A, Tanaka S, Minakata S. J. Am. Chem. Soc. 2014; 136: 8544
- 31 Sharma AK, Sameera WM. C, Takeda Y, Minakata S. ACS Catal. 2019; 9: 4582
- 32 Takeda Y, Shibuta K, Aoki S, Tohnai N, Minakata S. Chem. Sci. 2019; 10: 8642
- 33 Takeda Y, Matsuno T, Sharma AK, Sameera WM. C, Minakata S. Chem. Eur. J. 2019; 25: 10226
- 34 Poremba KE, Kadunce NT, Suzuki N, Cherney AH, Reisman SE. J. Am. Chem. Soc. 2017; 139: 5684
- 35 Kim S, Goldfogel MJ, Gilbert MM, Weix DJ. J. Am. Chem. Soc. 2020; 142: 9902
- 36 Everson DA, Shrestha R, Weix DJ. J. Am. Chem. Soc. 2010; 132: 920
- 37 Woods BP, Orlandi M, Huang CY, Sigman MS, Doyle AG. J. Am. Chem. Soc. 2017; 139: 5688
- 38 Liu S, Wang SL, Wan J, Peng S, Zhang JR, Ding HJ, Zhang B, Ni HL, Cao P, Hu P, Wang BQ, Chen B. Org. Lett. 2023; 25: 6582
- 39 Davies J, Janssen-Müller D, Zimin DP, Day CS, Yanagi T, Elfert J, Martin R. J. Am. Chem. Soc. 2021; 143: 4949
- 40 Zhang Y, Vogelsang E, Qu Z, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2017; 56: 12654
- 41 Williams WL, Gutiérrez-Valencia NE, Doyle AG. J. Am. Chem. Soc. 2023; 145: 24175
- 42 Tang W, Fan P. Org. Lett. 2023; 25: 5756
- 43 Kumar GS, Zhu C, Kancherla R, Shinde PS, Rueping M. ACS Catal. 2023; 13: 8813
- 44 Hu X, Cheng-Sánchez I, Cuesta-Galisteo S, Nevado C. J. Am. Chem. Soc. 2023; 145: 6270
- 45 Wang YZ, Wang ZH, Eshel IL, Sun B, Liu D, Gu YC, Milo A, Mei TS. Nat. Commun. 2023; 14: 2322
- 46 Steiman TJ, Liu J, Mengiste A, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7598
- 47 Mori Y, Hayashi M, Sato R, Tai K, Nagase T. Org. Lett. 2023; 25: 5569
- 48 Xu C.-H, Li J.-H, Xiang J.-N, Deng W. Org. Lett. 2021; 23: 3696
- 49 Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
- 50 Yasu Y, Koike T, Akita M. Adv. Synth. Catal. 2012; 354: 3414
- 51 Yu X.-Y, Zhou Q.-Q, Wang P.-Z, Liao C.-M, Chen J.-R, Xiao W.-J. Org. Lett. 2018; 20: 421
- 52 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
- 53 Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
- 54 Cao H, Kuang Y, Shi X, Wong KL, Tan BB, Kwan JM. C, Liu X, Wu J. Nat. Commun. 2020; 11: 1956
- 55 Fan P, Zhang C, Zhang L, Wang C. Org. Lett. 2020; 22: 3875
- 56 Fan P, Lan Y, Zhang C, Wang C. J. Am. Chem. Soc. 2020; 142: 2180
- 57 Jin Y, Liu J, Wang R, Wang C. Org. Lett. 2021; 23: 7364
- 58 Dongbang S, Doyle AG. J. Am. Chem. Soc. 2022; 144: 20067
- 59 Ellman JA, Ackermann L, Shi B.-F. J. Org. Chem. 2019; 84: 12701
- 60 Gandeepan P, Mller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 61 Yoshinoa T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
- 62 Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163
- 63 Li X, Yu S, Wang F, Wan B, Yu X. Angew. Chem. Int. Ed. 2013; 52: 2577
- 64 Gao K, Paira R, Yoshikai N. Adv. Synth. Catal. 2014; 356: 1486
- 65 Bhusan De P, Atta S, Pradhan S, Banerjee S, Shah TA, Punniyamurthy T. J. Org. Chem. 2020; 85: 4785
- 66 Zhou K, Zhu Y, Fan W, Chen Y, Xu X, Zhang J, Zhao Y. ACS Catal. 2019; 9: 6738
- 67 He S, Chen Y, Huang Z.-B, Li B, Shi D.-Q, Zhao Y. Adv. Synth. Catal. 2022; 364: 1555
- 68 Xu S, Hirano K, Miura M. Org. Lett. 2021; 23: 5471