Horm Metab Res 2025; 57(01): 7-17
DOI: 10.1055/a-2435-8264
Review

Diabetic Nephropathy: Pathogenesis, Mechanisms, and Therapeutic Strategies

Shivangi Dwivedi
1   College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India (Ringgold ID: RIN417518)
,
Mukesh Singh Sikarwar
1   College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India (Ringgold ID: RIN417518)
› Author Affiliations

Abstract

Diabetic nephropathy represents a predominant etiology of end-stage renal disease (ESRD) on a global scale, significantly impacting the morbidity and mortality rates of individuals with diabetes. The primary objective of this analysis is to furnish a comprehensive examination of the etiology, fundamental mechanisms, and treatment modalities for DN. The development of DN stems from a multitude of factors, encompassing a intricate interplay involving metabolic irregularities induced by hyperglycemia, alterations in hemodynamics, inflammatory responses, oxidative stress, and genetic susceptibility. Principal mechanisms encompass the generation of advanced glycation end products (AGEs), activation of protein kinase C (PKC), and overexpression of the renin-angiotensin-aldosterone system (RAAS). These processes precipitate glomerular hyperfiltration, hypertrophy, and eventually, fibrosis and scarring of the renal parenchyma. Initially, hyperglycemia triggers mesangial proliferation and thickening of the glomerular basement membrane in the incipient stages of DN, subsequently leading to progressive glomerular sclerosis and tubulointerstitial fibrosis. Inflammatory cascades, notably involving cytokines like TGF-β and NF-κB, play pivotal roles in the advancement of DN by fostering the accumulation of extracellular matrix and renal fibrosis. Inflammation pathways, particularly those involving cytokines like TGF-β and NF-κB, play essential roles in diabetic nephropathy progression by stimulating extracellular matrix accumulation and renal fibrosis. The presence of oxidative stress, worsened by dysfunctional mitochondria, contributes further to renal injury via lipid peroxidation and DNA damage. Current therapeutic approaches for diabetic nephropathy concentrate on optimizing glycemic control, controlling hypertension, and suppressing the renin-angiotensin-aldosterone system. Among antihypertensive medications, ACE inhibitors and angiotensin II receptor blockers are crucial for decelerating disease advancement.



Publication History

Received: 27 June 2024

Accepted after revision: 30 September 2024

Article published online:
21 November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Grover A, Sharma K, Gautam S. et al. Diabetes and its complications: therapies available, anticipated and aspired. Curr Diabetes Rev 2021; 17: 397-420
  • 2 Vashist SK, Luong JH, Vashist SK. et al. Future trends for the next generation of personalized and integrated healthcare for chronic diseases. In: Vashist SK, Luong JH (eds). Point-of-care technologies enabling next-generation healthcare monitoring and management. Berlin: Springer; 2019: 209-223
  • 3 Chhetri D, Amarnath RN, Samal S. et al. Diabetes mellitus and iPSC-based therapy. In: Noor R (ed). Advances in Diabetes Research and Management. Singapore: Springer Nature Singapore; 2023: 225-246
  • 4 Shahzad N, Alzahrani AR, Ibrahim IA. et al. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: a systemic review. Heliyon 2024; 10: 24207
  • 5 Scolari F, Ravani P. Atheroembolic renal disease. Lancet 2010; 375: 1650-1660
  • 6 Abbasi MA, Chertow GM, Hall YN. End-stage renal disease. BMJ Clin Evid 2010; 2010: 2002
  • 7 Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 2000; 52: 11-34
  • 8 Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 1998; 83: 1182-1191
  • 9 Wolf G. Molecular mechanisms of angiotensin II in the kidney: emerging role in the progression of renal disease: beyond haemodynamics. Nephrol Dial Transplant 1998; 13: 1131-1142
  • 10 Wolf G, Neilson EG. Angiotensin II as a renal growth factor. J Am Soc Nephrol 1993; 3: 1531-1540
  • 11 Antus B, Exton MS, Rosivall L. Angiotensin II: a regulator of inflammation during renal disease?. Int J Immunopathol Pharmacol 2001; 14: 25-30
  • 12 Chu KY, Leung PS. Angiotensin II in type 2 diabetes mellitus. Curr Protein Pept Sci 2009; 10: 75-84
  • 13 Ram C, Jha AK, Ghosh A. et al. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur J Pharmacol 2020; 885: 173503
  • 14 Hansson GK, Libby P, Schönbeck U. et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 2002; 91: 281-291
  • 15 Thierry AR, Roch B. Neutrophil extracellular traps and by-products play a key role in COVID-19: pathogenesis, risk factors, and therapy. J Clin Med 2020; 9: 2942
  • 16 Toma L, Stancu CS, Sima AV. Endothelial dysfunction in diabetes is aggravated by glycated lipoproteins; novel molecular therapies. Biomedicines 2020; 9: 18
  • 17 Cappon G, Vettoretti M, Sparacino G. et al. Clinical practice guidelines for type 2 diabetes mellitus in Korea. Diabetes Metab J 2019; 43: 398-406
  • 18 Yun SJ, Jeong IK, Cha JH. et al. Current status of low-density lipoprotein cholesterol target achievement in patients with type 2 diabetes mellitus in Korea compared with recent guidelines. Diabetes Metab J 2022; 46: 464
  • 19 Ninčević V, Omanović Kolarić T, Roguljić H. et al. Renal benefits of SGLT 2 inhibitors and GLP-1 receptor agonists: evidence supporting a paradigm shift in the medical management of type 2 diabetes. Int J Mol Sci 2019; 20: 5831
  • 20 Natali A, Nesti L, Tricò D. et al. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovasc Diabetol 2021; 20: 196
  • 21 Puglisi S, Rossini A, Poli R. et al. Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system. Front Endocrinol 2021; 12: 738848
  • 22 Lee MM, Petrie MC, McMurray JJ. et al. How do SGLT2 (sodium-glucose cotransporter 2) inhibitors and GLP-1 (glucagon-like peptide-1) receptor agonists reduce cardiovascular outcomes? Completed and ongoing mechanistic trials. Arterioscler Thromb Vasc Biol 2020; 40: 506-522
  • 23 Górriz JL, Soler MJ, Navarro-González JF. et al. GLP-1 receptor agonists and diabetic kidney disease: a call of attention to nephrologists. J Clin Med 2020; 9: 947
  • 24 Cherney DZ, Udell JA, Drucker DJ. Cardiorenal mechanisms of action of glucagon-like-peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Med 2021; 2: 1203-1230
  • 25 Bertoccini L, Baroni MG. GLP-1 receptor agonists and SGLT2 inhibitors for the treatment of type 2 diabetes: new insights and opportunities for cardiovascular protection. Diabetes 2021; 4: 193-212
  • 26 Chang SS, Jalal K, Charest AF. Renin-angiotensin-aldosterone system (RAAS) blockade does not affect kidney progression in patients with CKD without diabetes and without proteinuria: PO0442. J Am Soc Nephrol 2020; 31: 184
  • 27 Ferrario CM, Mullick AE. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 2017; 125: 57-71
  • 28 Pugliese NR, Masi S, Taddei S. The renin-angiotensin-aldosterone system: a crossroad from arterial hypertension to heart failure. Heart Fail Rev 2020; 25: 31-42
  • 29 Balakumar P, Jagadeesh G. Drugs targeting RAAS in the treatment of hypertension and other cardiovascular diseases. Pathophysiol Pharmacother Cardiovasc Dis 2015; 751-806
  • 30 Chan GC, Tang SC. Diabetic nephropathy: landmark clinical trials and tribulations. Nephrol Dial Transplant 2016; 31: 359-368
  • 31 Taraji H. A study of risk factors linked to depression among the elderly population of Iran: a systematic review across 20 years. Doctoral Dissertation, Morgan State University.
  • 32 Fatima A, Rasool S, Devi S. et al. Exploring the cardiovascular benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors: expanding horizons beyond diabetes management. Cureus 2023; 15: e46243
  • 33 Nasrallah MP, Abi Khalil C, Refaat MM. The landscape of glucose-lowering therapy and cardiovascular outcomes: from barren land to metropolis. BioMed Res Int. 2017 2017. 9257930
  • 34 Srivastava BK, Anjana RM, Amutha A. et al. Judicious use of modern technology with antihyperglycemic agents: the changing landscape of type 2 diabetes management. J Diabetol 2024; 15: 119-122
  • 35 Nevola R, Villani A, Imbriani S. et al. Sodium-glucose co-transporters family: current evidence, clinical applications and perspectives. Front Biosci Landmark 2023; 28: 103
  • 36 Arvanitakis K, Koufakis T, Kotsa K. et al. The effects of sodium-glucose cotransporter 2 inhibitors on hepatocellular carcinoma: From molecular mechanisms to potential clinical implications. Pharmacol Res 2022; 181: 106261
  • 37 Sánchez-Garrido MA, Brandt SJ, Clemmensen C. et al. GLP-1/glucagon receptor co-agonism for treatment of obesity. Diabetologia 2017; 60: 1851-1861
  • 38 Kobayati A, Haidar A, Tsoukas MA. Glucagon-like peptide-1 receptor agonists as adjunctive treatment for type 1 diabetes: renewed opportunities through tailored approaches?. Diabetes Obes Metab 2022; 24: 769-787
  • 39 Chintala SB, Ganta S. Diabetic nephropathy: prevalence, pathogenesis and signalling pathways. Curr Sci 2023; 124: 899-909
  • 40 Zhang X, Zhang J, Ren Y. et al. Unveiling the pathogenesis and therapeutic approaches for diabetic nephropathy: insights from panvascular diseases. Front Endocrinol 2024; 15: 1368481
  • 41 Hu Q, Chen Y, Deng X. et al. Diabetic nephropathy: focusing on pathological signals, clinical treatment, and dietary regulation. Biomed Pharmacother 2023; 159: 114252
  • 42 Wu T, Ding L, Andoh V. et al. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: an update. Life 2023; 13: 539
  • 43 Rüster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 2006; 17: 2985-2991
  • 44 Rahimi Z. The role of renin angiotensin aldosterone system genes in diabetic nephropathy. Canad J Diabetes 2016; 40: 178-183
  • 45 Ahmad J. Renin–angiotensin system blockade in diabetic nephropathy. Diabetes Metab Syndrome Clin Res Rev 2008; 2: 135-158
  • 46 Te Riet L, van Esch JH, Roks AJ. et al. Hypertension: renin–angiotensin–aldosterone system alterations. Circ Res 2015; 116: 960-975
  • 47 Pacurari M, Kafoury R, Tchounwou PB. et al. The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflam. 2014 2014. 689360.
  • 48 Sindhughosa DA, Pranamartha AG. The involvement of proinflammatory cytokines in diabetic nephropathy: Focus on interleukin 1 (IL-1), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) signaling mechanism. Bali Med J 2017; 6: 44-51
  • 49 Yaribeygi H, Atkin SL, Sahebkar A. Interleukin-18 and diabetic nephropathy: a review. J Cell Physiol 2019; 234: 5674-5682
  • 50 Ihim SA, Abubakar SD, Zian Z. et al. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: biological role in induction, regulation, and treatment. Front Immunol 2022; 13: 919973
  • 51 Haase VH. Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol 2006; 291: F271-F281
  • 52 Hall JA, Yerramilli MV, Obare E. et al. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. J Vet Intern Med 2014; 28: 1676-1683
  • 53 Pelander L, Häggström J, Larsson A. et al. Comparison of the diagnostic value of symmetric dimethylarginine, cystatin C, and creatinine for detection of decreased glomerular filtration rate in dogs. J Vet Intern Med 2019; 33: 630-639
  • 54 Togashi Y, Miyamoto Y. Urinary cystatin C as a biomarker for diabetic nephropathy and its immunohistochemical localization in kidney in Zucker diabetic fatty (ZDF) rats. Exp Ttoxicol Pathol 2013; 65: 615-622
  • 55 van Hoek I, Daminet S, Notebaert S. et al. Immunoassay of urinary retinol binding protein as a putative renal marker in cats. J Immunol Meth 2008; 329: 208-213
  • 56 Steinbach S, Weis J, Schweighauser A. et al. Plasma and urine neutrophil gelatinase–associated Lipocalin (NGAL) in dogs with acute kidney injury or chronic kidney disease. J Vet Intern Med 2014; 28: 264-269
  • 57 Mshelia DS. Role of free radicals in pathogenesis of diabetes nephropathy. Ann African Med 2004; 3: 55-62
  • 58 Vasavada N, Agarwal R. Role of oxidative stress in diabetic nephropathy. Adv Chronic Kidney Dis 2005; 12: 146-154
  • 59 Sagoo MK, Gnudi L. Diabetic nephropathy: is there a role for oxidative stress?. Free Radical Biol Med 2018; 116: 50-63
  • 60 Aruoma OI, Neergheen VS, Bahorun T. et al. Free radicals, antioxidants and diabetes: embryopathy, retinopathy, neuropathy, nephropathy and cardiovascular complications. Neuroembryol Aging 2007; 4: 117-137
  • 61 Jakus V. The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease. Bratislav Lekarske Listy 2000; 101: 541-551
  • 62 Goycheva P, Petkova-Parlapanska K, Georgieva E. et al. Biomarkers of oxidative stress in diabetes mellitus with diabetic nephropathy complications. Int J Mol Sci 2023; 24: 13541
  • 63 Mansoor G, Tahir M, Maqbool T. et al. Increased expression of circulating stress markers, inflammatory cytokines and decreased antioxidant level in diabetic nephropathy. Medicina 2022; 58: 1604
  • 64 Jin Q, Liu T, Qiao Y. et al. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14: 1185317
  • 65 Darenskaya M, Kolesnikov S, Semenova N. et al. Diabetic nephropathy: significance of determining oxidative stress and opportunities for antioxidant therapies. Int J Mol Sci 2023; 24: 12378
  • 66 Al-Mousawi AH, Al-Khafaji AA, Al-Kufaishi A. Assessment of oxidant and antioxidant for the patients with diabetic nephropathy in Al-Najaf Province. In: AIP Conference Proceedings. 2024 Mar 8 (Vol. 3092, No. 1). AIP Publishing;
  • 67 Ma J, Yang Z, Jia S, Yang R. A systematic review of preclinical studies on the taurine role during diabetic nephropathy: focused on anti-oxidative, anti-inflammation, and anti-apoptotic effects. Toxicol Mechan Meth 2022; 32: 420-430
  • 68 Rastogi K, Khan S, Ahmad A. et al. Role of oxidative stress and enzymatic antioxidants status in diabetic nephropathy (DN) patients-in western Uttar Pradesh. Int J Chem Biochem Sci 2023; 23: 275-280
  • 69 Dh HS, Sultana R, Prabhu A. et al. Biomedicine and pharmacotherapeutic effectiveness of combinatorial atorvastatin and quercetin on diabetic nephropathy: an in vitro study. Biomed Pharmacother 2024; 174: 116533
  • 70 Hussain Lodhi A, Ahmad FU, Furwa K. et al. Role of oxidative stress and reduced endogenous hydrogen sulfide in diabetic nephropathy. Drug Design Develop Ther. 2021 15. 1031-1043
  • 71 Darenskaya M, Kolesnikov S, Semenova N. et al. Diabetic nephropathy: significance of determining oxidative stress and opportunities for antioxidant therapies. Int J Mol Sci 2023; 24: 12378
  • 72 Goycheva P, Petkova-Parlapanska K, Georgieva E. et al. Biomarkers of oxidative stress in diabetes mellitus with diabetic nephropathy complications. Int J Mol Sci 2023; 24: 13541
  • 73 Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. In: Seminars in Nephrology. Philedelphia: WB Saundres; 2007. 27. 130-143
  • 74 Sanajou D, Haghjo AG, Argani H. et al. AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions. Eur J Pharmacol 2018; 833: 158-164
  • 75 Abdel-Rahman EM, Saadulla L, Reeves WB. et al. Therapeutic modalities in diabetic nephropathy: standard and emerging approaches. J Gen Intern Med 2012; 27: 458-468
  • 76 Marshall SM. Recent advances in diabetic nephropathy. Postgrad Med J 2004; 80: 624-633
  • 77 Giglio RV, Patti AM, Rizvi AA. et al. Advances in the pharmacological management of diabetic nephropathy: a 2022 international update. Biomedicines 2023; 11: 291
  • 78 Wang N, Zhang C. Recent advances in the management of diabetic kidney disease: slowing progression. Int J Mol Sci 2024; 25: 3086
  • 79 Rico-Fontalvo J, Aroca-Martínez G, Daza-Arnedo R. et al. Novel biomarkers of diabetic kidney disease. Biomolecules 2023; 13: 633
  • 80 Jha R, Lopez-Trevino S, Kankanamalage HR. et al. Diabetes and renal complications: an overview on pathophysiology, biomarkers and therapeutic interventions. Biomedicines 2024; 12: 1098
  • 81 Stompór T, Adamczak M, Kurnatowska I. et al. Pharmacological nephroprotection in non-diabetic chronic kidney disease – clinical practice position statement of the Polish society of nephrology. J Clin Med 2023; 12: 5184
  • 82 Gómez-Jaramillo L, Cano-Cano F, Sánchez-Fernández EM. et al. Unravelling the inflammatory processes in the early stages of diabetic nephropathy and the potential effect of (Ss)-DS-ONJ. Int J Mol Sci 2022; 23: 8450
  • 83 Putra IM, Fakhrudin N, Nurrochmad A. et al. A review of medicinal plants with renoprotective activity in diabetic nephropathy animal models. Life 2023; 13: 560
  • 84 Darenskaya M, Kolesnikov S, Semenova N. et al. Diabetic nephropathy: significance of determining oxidative stress and opportunities for antioxidant therapies. Int J Mol Sci 2023; 24: 12378
  • 85 Krawczyk M, Burzynska-Pedziwiatr I, Wozniak LA. et al. Impact of polyphenols on inflammatory and oxidative stress factors in diabetes mellitus: nutritional antioxidants and their application in improving antidiabetic therapy. Biomolecules 2023; 13: 1402
  • 86 Bogacka A, Sobczak-Czynsz A, Balejko E. et al. Effect of diet and supplementation on serum vitamin C concentration and antioxidant activity in dialysis patients. Nutrients 2022; 15: 78
  • 87 Banaszak M, Górna I, Woźniak D. et al. The impact of curcumin, resveratrol, and cinnamon on modulating oxidative stress and antioxidant activity in type 2 diabetes: moving beyond an anti-hyperglycaemic evaluation. Antioxidants 2024; 13: 510
  • 88 Taha A, Ashour HK, Reffat M. et al. The impact of ginger and curcumin on diabetic nephropathy induced by streptozotocin in rats. Eur J Transl Clin Med 2023; 6: 51-65
  • 89 Akpoveso OO, Ubah EE, Obasanmi G. Antioxidant phytochemicals as potential therapy for diabetic complications. Antioxidants 2023; 12: 123
  • 90 Ej L. The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1455
  • 91 Brenner BM, Cooper ME, De Zeeuw D. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Eng J Med 2001; 345: 861-869
  • 92 Lewis EJ, Hunsicker LG, Clarke WR. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Eng J Med 2001; 345: 851-860
  • 93 AH B. Diabetics exposed to telmisartan and enalapril study group. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med 2004; 351: 1952-1961
  • 94 Bakris GL, Agarwal R, Anker SD. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Eng J Med 2020; 383: 2219-2229
  • 95 Herrington WG, Baigent C, Haynes R. Empagliflozin in patients with chronic kidney disease. Reply. N Eng J Med 2023; 388: 2301-2302
  • 96 Heerspink HJ, Kiyosue A, Wheeler DC. et al. Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 2023; 402: 2004-2017
  • 97 Tuttle K, Hauske S, Shah SV. et al. WCN24-1550 aldosterone synthase inhibition with or without background sodium glucose cotransporter 2 inhibition in CKD: a phase II clinical trial. Kidney Int Rep 2024; 9: S78-S79
  • 98 Ritz E, Zeng XX, Rychlík I. Clinical manifestation and natural history of diabetic nephropathy. Diabetes Kidney 2011; 170: 19-27
  • 99 Parchwani DN, Upadhyah AA. Diabetic nephropathy: progression and pathophysiology. Int J Med Sci Public Health 2012; 1: 59-70
  • 100 Laher I. (ed). Systems biology of free radicals and antioxidants. Berlin/Heidelberg: Springer; 2014
  • 101 Nguyen XT, Moekotte L, Plomp AS. et al. Retinitis pigmentosa: current clinical management and emerging therapies. Int J Mol Sci 2023; 24: 7481
  • 102 Narins BE, Narins RG. Clinical features and health-care costs of diabetic nephropathy. Diabetes Care 1988; 11: 833-839
  • 103 Strippoli GF, Di Paolo S, Cincione R. et al. Clinical and therapeutic aspects of diabetic nephropathy. Population 2003; 17: 18
  • 104 Currie G, McKay G, Delles C. Biomarkers in diabetic nephropathy: present and future. World J Diabetes 2014; 5: 763
  • 105 Singh R, Kishore L, Kaur N. Diabetic peripheral neuropathy: current perspective and future directions. Pharmacol Res 2014; 80: 21-35
  • 106 Garg M, Lubel JS, Sparrow MP. et al. Vitamin D and inflammatory bowel disease–established concepts and future directions. Aliment Pharmacol Therapeut 2012; 36: 324-344
  • 107 Tuttle KR, Bakris GL, Bilous RW. et al. Diabetic kidney disease: a report from an ADA consensus conference. Diabetes Care 2014; 37: 2864-2883