Planta Med
DOI: 10.1055/a-2441-6488
Reviews

Pharmacological Effects of Paeonia lactiflora Focusing on Painful Diabetic Neuropathy

Vanessa Wiegand
Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
,
Ying Gao
Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
,
Nicole Teusch
Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
› Author Affiliations
This work is funded in-house.

Abstract

Painful diabetic neuropathy (PDN) is a highly prevalent complication in patients suffering from diabetes mellitus. Given the inadequate pain-relieving effect of current therapies for PDN, there is a high unmet medical need for specialized therapeutic options. In traditional Chinese medicine (TCM), various herbal formulations have been implemented for centuries to relieve pain, and one commonly used plant in this context is Paeonia lactiflora (P. lactiflora). Here, we summarize the chemical constituents of P. lactiflora including their pharmacological mechanisms-of-action and discuss potential benefits for the treatment of PDN. For this, in silico data, as well as preclinical and clinical studies, were critically reviewed and comprehensively compiled. Our findings reveal that P. lactiflora and its individual constituents exhibit a variety of pharmacological properties relevant for PDN, including antinociceptive, anti-inflammatory, antioxidant, and antiapoptotic activities. Through this multifaceted and complex combination of various pharmacological effects, relevant hallmarks of PDN are specifically addressed, suggesting that P. lactiflora may represent a promising source for novel therapeutic approaches for PDN.



Publication History

Received: 25 July 2024

Accepted after revision: 03 October 2024

Article published online:
29 October 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JC, Mbanya JC. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022; 183: 109119
  • 2 Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14: 88-98
  • 3 Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S. Diabetic peripheral neuropathy: Pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 14: 1265372
  • 4 Lu Y, Xing P, Cai X, Luo D, Li R, Lloyd C, Sartorius N, Li M. Prevalence and risk factors for diabetic peripheral neuropathy in type 2 diabetic patients from 14 countries: Estimates of the INTERPRET-DD study. Front Public Health 2020; 8: 534372
  • 5 Hicks CW, Selvin E. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes. Curr Diab Rep 2019; 19: 1-8
  • 6 Sloan G, Shillo P, Selvarajah D, Wu J, Wilkinson ID, Tracey I, Anand P, Tesfaye S. A new look at painful diabetic neuropathy. Diabetes Res Clin Pract 2018; 144: 177-191
  • 7 Abdissa D. Prevalence and associated factors of painful diabetic peripheral neuropathy among diabetic patients on follow up at Jimma University Medical Center. J Diabetes Metab Disord 2020; 19: 1407-1413
  • 8 Ziegler D, Landgraf R, Lobmann R, Reiners K, Rett K, Schnell O, Strom A. Painful and painless neuropathies are distinct and largely undiagnosed entities in subjects participating in an educational initiative (PROTECT study). Diabetes Res Clin Pract 2018; 139: 147-154
  • 9 Alleman CJ, Westerhout KY, Hensen M, Chambers C, Stoker M, Long S, van Nooten FE. Humanistic and economic burden of painful diabetic peripheral neuropathy in Europe: A review of the literature. Diabetes Res Clin Pract 2015; 109: 215-225
  • 10 Girach A, Julian TH, Varrassi G, Paladini A, Vadalouka A, Zis P. Quality of life in painful peripheral neuropathies: A systematic review. Pain Res Manag 2019; 2019: 2091960
  • 11 Gylfadottir SS, Christensen DH, Nicolaisen SK, Andersen H, Callaghan BC, Itani M, Khan KS, Kristensen AG, Nielsen JS, Sindrup SH. Diabetic polyneuropathy and pain, prevalence, and patient characteristics: A cross-sectional questionnaire study of 5, 514 patients with recently diagnosed type 2 diabetes. Pain 2020; 161: 574-583
  • 12 Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol 2021; 17: 400-420
  • 13 Eid SA, Rumora AE, Beirowski B, Bennett DL, Hur J, Savelieff MG, Feldman EL. New perspectives in diabetic neuropathy. Neuron 2023; 111: 2623-2641
  • 14 Lee Y, Lee CH, Oh U. Painful channels in sensory neurons. Mol Cells 2005; 20: 315-324
  • 15 Wang Q, Ye Y, Yang L, Xiao L, Liu J, Zhang W, Du G. Painful diabetic neuropathy: The role of ion channels. Biomed Pharmacother 2024; 173: 116417
  • 16 Joksimovic SL, Jevtovic-Todorovic V, Todorovic SM. The mechanisms of plasticity of nociceptive ion channels in painful diabetic neuropathy. Front Pain Res (Lausanne) 2022; 3: 869735
  • 17 Niimi N, Yako H, Takaku S, Chung SK, Sango K. Aldose reductase and the polyol pathway in schwann cells: Old and new problems. Int J Mol Sci 2021; 22: 1031
  • 18 Gonçalves NP, Vægter CB, Andersen H, Østergaard L, Calcutt NA, Jensen TS. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol 2017; 13: 135-147
  • 19 Msheik Z, El Massry M, Rovini A, Billet F, Desmoulière A. The macrophage: A key player in the pathophysiology of peripheral neuropathies. J Neuroinflammation 2022; 19: 97
  • 20 Yang K, Wang Y, Li YW, Chen YG, Xing N, Lin HB, Zhou P, Yu XP. Progress in the treatment of diabetic peripheral neuropathy. Biomed Pharmacother 2022; 148: 112717
  • 21 Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5: 1-18
  • 22 Rawat A, Morrison BM. Metabolic transporters in the peripheral Nerve–What, where, and why?. Neurotherapeutics 2021; 18: 2185-2199
  • 23 Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833: 472-523
  • 24 Qureshi Z, Ali MN, Khalid M. An insight into potential pharmacotherapeutic agents for painful diabetic neuropathy. J Diabetes Res 2022; 2022: 9989272
  • 25 Feldman EL, Nave KA, Jensen TS, Bennett DL. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 2017; 93: 1296-1313
  • 26 Kan YY, Chang YS, Liao WC, Chao TN, Hsieh YL. Roles of neuronal protein kinase Cε on endoplasmic reticulum stress and autophagic formation in diabetic neuropathy. Mol Neurobiol 2024; 61: 2481-2495
  • 27 Mizukami H, Osonoi S. Collateral glucose-utlizing pathwaya in diabetic polyneuropathy. Int J Mol Sci 2020; 22: 94
  • 28 Vincent AM, Hayes JM, McLean LL, Vivekanandan-Giri A, Pennathur S, Feldman EL. Dyslipidemia-induced neuropathy in mice: The role of oxLDL/LOX-1. Diabetes 2009; 58: 2376-2385
  • 29 Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: Cellular mechanisms as therapeutic targets. Nat Rev Neurol 2011; 7: 573-583
  • 30 Kim B, Feldman EL. Insulin resistance in the nervous system. Trends Endocrinol Metab 2012; 23: 133-141
  • 31 Rastogi A, Jude E. Novel treatment modalities for painful diabetic neuropathy. Diabetes Metab Syndr 2021; 15: 287-293
  • 32 Callaghan BC, Gallagher G, Fridman V, Feldman EL. Diabetic neuropathy: What does the future hold?. Diabetologia 2020; 63: 891-897
  • 33 Frampton JE, Scott LJ. Pregabalin: In the treatment of painful diabetic peripheral neuropathy. Drugs 2004; 64: 2813-2820
  • 34 Park S, Ahn ES, Han DW, Lee JH, Min KT, Kim H, Hong YW. Pregabalin and gabapentin inhibit substance P-induced NF-κB activation in neuroblastoma and glioma cells. J Cell Biochem 2008; 105: 414-423
  • 35 Song M, Huai B, Shi Z, Li W, Xi Y, Liu Z, Zhang J, Zhou J, Qiao Y, Liu D. The efficacy and safety of Chinese herbal medicine in the treatment of painful diabetic neuropathy: A systematic review and meta-analysis. Front Pharmacol 2023; 14: 1072991
  • 36 Papanas N, Ziegler D. Emerging drugs for diabetic peripheral neuropathy and neuropathic pain. Expert Opin Emerg Drugs 2016; 21: 393-407
  • 37 He DY, Dai SM. Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine. Front Pharmacol 2011; 2: 10
  • 38 Parker S, May B, Zhang C, Zhang AL, Lu C, Xue CC. A pharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phytother Res 2016; 30: 1445-1473
  • 39 European Pharmacopoeia Commission. European Pharmacopoeia, 11th Ed. Stuttgart: Deutscher Apotheker Verlag; 2022
  • 40 Chinese Pharmacopoeia Commission. Chinese Pharmacopeia. Beijing: China Medical Science Press; 2020
  • 41 Hong H, Lu X, Wu C, Chen J, Chen C, Zhang J, Huang C, Cui Z. A review for the pharmacological effects of paeoniflorin in the nervous system. Front Pharmacol 2022; 13: 898955
  • 42 Tan YQ, Chen HW, Li J, Wu QJ. Efficacy, chemical constituents, and pharmacological actions of Radix Paeoniae Rubra and Radix Paeoniae Alba . Front Pharmacol 2020; 11: 1054
  • 43 Li M, Zhu X, Zhang M, Yu J, Jin S, Hu X, Piao H. The analgesic effect of paeoniflorin: A focused review. Open Life Sci 2024; 19: 20220905
  • 44 Zhang D, Bing Y, Chang SQ, Sheng-Suo M, Jian-Xin S, Lin Y, Xing L, Hui-Mei S, Bei J, Zheng YC. Protective effect of paeoniflorin on H2O2 induced Schwann cells injury based on network pharmacology and experimental validation. Chin J Nat Med 2021; 19: 90-99
  • 45 Adki KM, Kulkarni YA. Neuroprotective effect of paeonol in streptozotocin-induced diabetes in rats. Life Sci 2021; 271: 119202
  • 46 Chang S, Li X, Zheng Y, Shi H, Zhang D, Jing B, Chen Z, Qian G, Zhao G. Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-ĸB signaling pathway. Phytother Res 2022; 36: 1678-1691
  • 47 Li X, Shi H, Zhang D, Jing B, Chen Z, Zheng Y, Chang S, Gao L, Zhao G. Paeonol alleviates neuropathic pain by modulating microglial M1 and M2 polarization via the RhoA/p 38MAPK signaling pathway. CNS Neurosci Ther 2023; 29: 2666-2679
  • 48 Fan Z, Liu J, Wang X, Yang S, Wang Q, Yan L, Zhang Y, Wu X. Paeoniae radix rubra: A review of ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control. Chem Biodivers 2024; 21: e202401119
  • 49 Li P, Shen J, Wang Z, Liu S, Liu Q, Li Y, He C, Xiao P. Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology. J Ethnopharmacol 2021; 269: 113708
  • 50 Xiong P, Qin SH, Li KL, Liu MJ, Zhu L, Peng J, Shi SL, Tang SN, Tian AP, Cai W. Identification of the tannins in traditional Chinese medicine Paeoniae Radix Alba by UHPLC-Q-Exactive Orbitrap MS. Arab J Chem 2021; 14: 103398
  • 51 Xu SY, Cao HY, Yang RH, Xu RX, Zhu XY, Ma W, Liu XB, Yan XY, Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. Phytomedicine 2024; 127: 155483
  • 52 Jiang H, Li J, Wang L, Wang S, Nie X, Chen Y, Fu Q, Jiang M, Fu C, He Y. Total glucosides of paeony: A review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. J Ethnopharmacol 2020; 258: 112913
  • 53 Aimi N, Inaba M, Watanabe M, Shibata S. Chemical studies on the oriental plant drugs–XXIII: Paeoniflorin, a glucoside of Chinese paeony root. Tetrahedron 1969; 25: 1825-1838
  • 54 Hayashi T, Shinbo T, Shimizu M, Arisawa M, Morita N, Kimura M, Matsuda S, Kikuchi T. Paeonilactone-A, -B, and -C, new monoterpenoids from paeony root. Tetrahedron Lett 1985; 26: 3699-3702
  • 55 Ikuta A, Kamiya K, Satake T, Saiki Y. Triterpenoids from callus tissue cultures of Paeonia species. Phytochemistry 1995; 38: 1203-1207
  • 56 Xia XF, Wang LY, Xia GY, Xia H, Zhou LN, Li WT, Lin PC, Lin S. Oleanane and 30-noroleanane triterpenoids from the roots of Paeonia lactiflora . Fitoterapia 2024; 176: 105981
  • 57 Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, Giraldo-Gomez DM, Magaña JJ, Leyva-Gómez G. Therapeutic applications of terpenes on inflammatory diseases. Front Pharmacol 2021; 12: 704197
  • 58 Kadota S, Terashima S, Kikuchi T, Namba T. Palbinone, a potent inhibitor of 3α-hydroxy dehydrogenase from Paeonia albiflora . Tetrahedron Lett 1992; 33: 255-256
  • 59 Kadota S, Basnet P, Terashima S, Li JX, Namba T, Kageyu A. Palbinone, a novel terpenoid from Paeonia albiflora: A potent inhibitory activity on human monocyte interleukin-1β . Phytother Res 1995; 9: 379-381
  • 60 Ericson-Neilsen W, Kaye AD. Steroids: pharmacology, complications, and practice delivery issues. Ochsner J 2014; 14: 203-207
  • 61 Shi Q, Wang J, Cheng Y, Dong X, Zhang M, Pei C. Palbinone alleviates diabetic retinopathy in STZ-induced rats by inhibiting NLRP3 inflammatory activity. J Biochem Mol Toxicol 2020; 34: e22489
  • 62 Khan Z, Nath N, Rauf A, Emran TB, Mitra S, Islam F, Chandran D, Barua J, Khandaker MU, Idris AM, Wilairatana P, Thiruvengadam M. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem Biol Interact 2022; 365: 110117
  • 63 Pizzi A. Tannins medical/pharmacological and related applications: A critical review. Sustain Chem Pharm 2021; 22: 100481
  • 64 Nishizawa M, Yamagishi T, Nonaka G, Nishioka I, Nagasawa T, Oura H. Tannins and related compounds. XII. Isolation and characterization of galloylglucoses from Paeoniae Radix and their effect on urea-nitrogen concentration in rat serum. Chem Pharm Bull 1983; 31: 2593-2600
  • 65 Juan YC, Chang CC, Tsai WJ, Lin YL, Hsu YS, Liu HK. Pharmacological evaluation of insulin mimetic novel suppressors of PEPCK gene transcription from Paeoniae Rubra Radix. J Ethnopharmacol 2011; 137: 592-600
  • 66 Smeriglio A, Barreca D, Bellocco E, Trombetta D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br J Pharmacol 2017; 174: 1244-1262
  • 67 Lv M, Yang Y, Choisy P, Xu T, Pays K, Zhang L, Zhu J, Wang Q, Li S, Wang L. Flavonoid components and anti-photoaging activity of flower extracts from six Paeonia cultivars . Ind Crops Prod 2023; 200: 116707
  • 68 Belwal T, Singh G, Jeandet P, Pandey A, Giri L, Ramola S, Bhatt ID, Venskutonis PR, Georgiev MI, Clément C, Luo Z. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnol Adv 2020; 43: 107600
  • 69 Liu L, Yuan Y, Zuo J, Tao J. Composition and antioxidant activity of Paeonia lactiflora petal flavonoid extract and underlying mechanisms of the protective effect on H2O2-induced oxidative damage in BRL3A cells. Hortic Plant J 2023; 9: 335-344
  • 70 Hosoki T, Seo M. Flower anthocyanins of herbaceous peony. Bull Fac Agr Shimane Univ 1991; 25: 11-14
  • 71 Kim HJ, Chung SK, Park SW. Lipoxygenase inhibitors from Paeonia lactiflora seeds. Prev Nutr Food Sci 1999; 4: 163-166
  • 72 Tanaka T, Zhang H, Jiang ZH, Kouno I. Relationship between hydrophobicity and structure of hydrolyzable tannins, and association of tannins with crude drug constituents in aqueous solution. Chem Pharm Bull 1997; 45: 1891-1897
  • 73 Ulubelen A, Cetin ET, Isildatici S, Öztürk S. Phytochemical investigation of Paeonia decora . Lloydia 1968; 31: 249-251
  • 74 Liu X, Yang MH, Wang XB, Xie SS, Li ZR, Kim DH, Park JS, Kong LY. Lignans from the root of Paeonia lactiflora and their anti-β-amyloid aggregation activities. Fitoterapia 2015; 103: 136-142
  • 75 Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. Phytochemistry 2022; 197: 113128
  • 76 Ryu HW, Song HH, Shin IS, Cho BO, Jeong SH, Kim DY, Ahn KS, Oh SR. Suffruticosol A isolated from Paeonia lactiflora seedcases attenuates airway inflammation in mice induced by cigarette smoke and LPS exposure. J Funct Foods 2015; 17: 774-784
  • 77 Nie R, Zhang Y, Jin Q, Zhang S, Wu G, Chen L, Zhang H, Wang X. Identification and characterisation of bioactive compounds from the seed kernels and hulls of Paeonia lactiflora Pall by UPLC-QTOF-MS. Food Res Int 2021; 139: 109916
  • 78 Zhao Q, Gu L, Li Y, Zhi H, Luo J, Zhang Y. Volatile composition and classification of Paeonia lactiflora flower aroma types and identification of the fragrance-related genes. Int J Mol Sci 2023; 24: 9410
  • 79 Wang T, Xie A, Zhang D, Zemiao L, Li X, Li Y, Sun X. Analysis of the volatile components in flowers of Paeonia lactiflora Pall. and Paeonia lactiflora Pall. var. Trichocarpa . Am J Plant Sci 2021; 12: 146-162
  • 80 Zhang L, Li DC, Liu LF. Paeonol: Pharmacological effects and mechanisms of action. Int Immunopharmacol 2019; 72: 413-421
  • 81 Adki KM, Kulkarni YA. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci 2020; 250: 117544
  • 82 Wu R, Liu Y, Zhang F, Dai S, Xue X, Peng C, Li Y, Li Y. Protective mechanism of Paeonol on central nervous system. Phytother Res 2024; 38: 470-488
  • 83 Hopkins AL. Network pharmacology: The next paradigm in drug discovery. Nat Chem Biol 2008; 4: 682-690
  • 84 Guney E, Menche J, Vidal M, Barábasi AL. Network-based in silico drug efficacy screening. Nat Commun 2016; 7: 10331
  • 85 Di Z, Ma S, Sun J. Mechanisms involved in antineuralgic effects of Paeonia Lactiflora: Prediction based on network pharmacology. TMR Clinical Research 2019; 2: 43-56
  • 86 Jin ZL, Gao N, Xu W, Xu P, Li S, Zheng YY, Xue M. Receptor and transporter binding and activity profiles of albiflorin extracted from Radix paeoniae Alba. Sci Rep 2016; 6: 33793
  • 87 Hu F, Lin J, Xiong L, Li Z, Liu WK, Zheng YJ. Exploring the molecular mechanism of Xuebifang in the treatment of diabetic peripheral neuropathy based on bioinformatics and network pharmacology. Front Endocrinol (Lausanne) 2024; 15: 1275816
  • 88 Pan HT, Xi ZQ, Wei XQ, Wang K. A network pharmacology approach to predict potential targets and mechanisms of “Ramulus Cinnamomi (cassiae)–Paeonia lactiflora” herb pair in the treatment of chronic pain with comorbid anxiety and depression. Ann Med 2022; 54: 413-425
  • 89 Bishnoi M, Bosgraaf CA, Abooj M, Zhong L, Premkumar LS. Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: Role of transient receptor potential vanilloid 1 (TRPV1) and inflammatory mediators. Mol Pain 2011; 7: 52
  • 90 Kishore L, Kaur N, Singh R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology 2018; 26: 993-1003
  • 91 Zhang D, Jing B, Li X, Shi H, Chen Z, Chang S, Zheng Y, Lin Y, Pan Y, Sun J. Antihyperalgesic effect of Paeniflorin based on chronic constriction injury in rats. Rev Bras Farmacogn 2022; 32: 375-385
  • 92 Zhou J, Wang L, Wang J, Wang C, Yang Z, Wang C, Zhu Y, Zhang J. Paeoniflorin and albiflorin attenuate neuropathic pain via MAPK pathway in chronic constriction injury rats. Evid Based Complement Alternat Med 2016; 2016: 8082753
  • 93 Liu P, Cheng J, Ma S, Zhou J. Paeoniflorin attenuates chronic constriction injury-induced neuropathic pain by suppressing spinal NLRP3 inflammasome activation. Inflammopharmacology 2020; 28: 1495-1508
  • 94 Liu P, Chen J, Ma S, Zhang J, Zhou J. Albiflorin attenuates mood disorders under neuropathic pain state by suppressing the hippocampal NLRP3 inflammasome activation during chronic constriction injury. Int J Neuropsychopharmacol 2021; 24: 64-76
  • 95 Zheng Y, Zhao J, Chang S, Zhuang Z, Waimei S, Li X, Chen Z, Jing B, Zhang D, Zhao G. β-sitosterol alleviates neuropathic pain by affect microglia polarization through inhibiting TLR4/NF-κB signaling pathway. J Neuroimmune Pharmacol 2023; 18: 690-703
  • 96 Cai L, Zeng R, Huang Q, Liu X, Cao Z, Guo Q. Paeonol inhibits chronic constriction injury-induced astrocytic activation and neuroinflammation in rats via the HDAC/miR-15a pathway. Drug Dev Res 2022; 83: 1758-1765
  • 97 Yin D, Liu YY, Wang TX, Hu ZZ, Qu WM, Chen JF, Cheng NN, Huang ZL. Paeoniflorin exerts analgesic and hypnotic effects via adenosine A 1 receptors in a mouse neuropathic pain model. Psychopharmacology (Berl) 2016; 233: 281-293
  • 98 Fan YX, Hu L, Zhu SH, Han Y, Liu WT, Yang YJ, Li QP. Paeoniflorin attenuates postoperative pain by suppressing matrix Metalloproteinase-9/2 in mice. Eur J Pain 2018; 22: 272-281
  • 99 Andoh T, Kurokawa Y, Kato M, Juntado ME. Local preventive effects of shakuyakukanzoto and paeoniflorin external gel on paclitaxel-induced peripheral neuropathic pain in mice. Tradit Kampo Med 2022; 9: 186-191
  • 100 Andoh T, Kobayashi N, Uta D, Kuraishi Y. Prophylactic topical paeoniflorin prevents mechanical allodynia caused by paclitaxel in mice through adenosine A1 receptors. Phytomedicine 2017; 25: 1-7
  • 101 Hu B, Xu G, Zhang X, Xu L, Zhou H, Ma Z, Shen X, Zhu J, Shen R. Paeoniflorin attenuates inflammatory pain by inhibiting microglial activation and Akt-NF-κB signaling in the central nervous system. Cell Physiol Biochem 2018; 47: 842-850
  • 102 Ruan Y, Ling J, Ye F, Cheng N, Wu F, Tang Z, Cheng X, Liu H. Paeoniflorin alleviates CFA-induced inflammatory pain by inhibiting TRPV1 and succinate/SUCNR1-HIF-1α/NLPR3 pathway. Int Immunopharmacol 2021; 101: 108364
  • 103 Yin N, Gao Q, Tao W, Chen J, Bi J, Ding F, Wang Z. Paeoniflorin relieves LPS-induced inflammatory pain in mice by inhibiting NLRP3 inflammasome activation via transient receptor potential vanilloid 1. J Leukoc Biol 2020; 108: 229-241
  • 104 Feng LM, Chen YY, Xu DQ, Fu RJ, Yue SJ, Zhao Q, Huang YX, Bai X, Wang M, Xing LM, Tang YP, Duan JA. An integrated strategy for discovering effective components of Shaoyao Gancao decoction for treating neuropathic pain by the combination of partial least-squares regression and multi-index comprehensive method. J Ethnopharmacol 2020; 260: 113050
  • 105 Meizhen Z, Xiaohui H, Yiting T, Yupeng C, Puyu HE, Liming Z, Bing P, Qing NI. Efficacy and safety of Buyang Huanwu decoction for diabetic peripheral neuropathy: A systematic review and metaanalysis. J Tradit Chin Med 2023; 43: 841-850
  • 106 Wang Y, Sheng C. Clinical research of modified Danggui-Sini decoction combined with mecobalamin in treatment of diabetic peripheral neuropathy. Int J Trad Chin Med 2017; 11: 981-984
  • 107 Wang C, Lin J, Xie H, Chen L, Chen P, Wu L, Gong Q, Xia D, Wang X. Study on analgesic effect of Shentong Zhuyu Decoction in neuropathic pain rats by network pharmacology and RNA-Seq. J Ethnopharmacol 2024; 330: 118189
  • 108 Pang B, Zhao TY, Zhao LH, Wan F, Ye R, Zhou Q, Tian F, Tong XL. Huangqi Guizhi Wuwu Decoction for treating diabetic peripheral neuropathy: A meta-analysis of 16 randomized controlled trials. Neural Regen Res 2016; 11: 1347-1358
  • 109 Zhan G, Zheng Y, Li D, Zhang H. Clinical effect of Yiqi Huoxue Tongmai decoction in the treatment of diabetic peripheral neuropathy. Pak J Zool 2024; 56: 1-6
  • 110 Zhang A, Wang Q, Liu M, Tan M, Zhang X, Wu R. Efficacy and safety of Mudan granules for painful diabetic peripheral neuropathy: A protocol for a double-blind randomized controlled trial. Medicine (Baltimore) 2022; 101: e28896
  • 111 Zhang Y, Wu X, Yao W, Ni Y, Ding X. Advances of traditional Chinese medicine preclinical mechanisms and clinical studies on diabetic peripheral neuropathy. Pharm Biol 2024; 62: 544-561
  • 112 China Association of Chinese Medicine. Expert consensus on the clinical application of Mudan granules in the treatment of diabetic peripheral neuropathy. Accessed July 04, 2024 at: http://www.cacm.org.cn
  • 113 Zhang Y, Jin D, Duan Y, Hao R, Chen K, Yu T, Lian F, Tong X. Efficacy of Mudan Granule (combined with methylcobalamin) on type 2 diabetic peripheral neuropathy: study protocol for a double-blind, randomized, placebo-controlled, parallel-arm, multi-center trial. Front Pharmacol 2021; 12: 676503
  • 114 Sawangjit R, Thongphui S, Chaichompu W, Phumart P. Efficacy and safety of mecobalamin on peripheral neuropathy: A systematic review and meta-analysis of randomized controlled trials. J Altern Complement Med 2020; 26: 1117-1129
  • 115 Cheng X, Wei Z, Pu S, Xiang M, Yan A, Zhang Y, Wang X. Diversity of endophytic fungi of Paeonia Lactiflora Pallas and screening for fungal paeoniflorin producers. FEMS Microbiol Lett 2018; 365: fny263
  • 116 Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993; 260: 214-216