Pharmacopsychiatry 2025; 58(01): 5-13
DOI: 10.1055/a-2446-6877
Original Paper

Impact of Parkinson Medication on Neuropsychiatric and Neurocognitive Symptoms in Patients with Advanced Parkinson Disease Prior to Deep Brain Stimulation

Jan Haeckert
1   Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
,
Astrid Roeh
1   Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
,
Susanne Karch
2   Department of Psychiatry and Psychotherapy, University Hospital Munich, LMU Munich, München, Germany
,
Thomas Koeglsperger
3   Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
4   Department of Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
,
Alkomiet Hasan
1   Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
5   DZPG (German Center for Mental Health), partner site Munich/Augsburg, Germany
,
Irina Papazova
1   Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
› Institutsangaben

Abstract

Introduction This study evaluates the impact of Parkinson disease (PD) medication in advanced PD on neuropsychological performance, psychiatric symptoms, impulsivity and the quality of life. In the 4-year period 27 patients with advanced PD, scheduled for deep brain stimulation (DBS) surgery (N=27, mean age: 58.9±7.1, disease duration: 10.0 years±4.2) were examined preoperatively. We hypothesized that a high dosage of PD medication or current use of dopamine agonists affect cognitive functioning and psychiatric wellbeing.

Methods We performed two subgroup analyses with low versus high levodopa-equivalent Dosage (LED) medication and without versus with dopaminagonistic medication.

Results The neuropsychological testing revealed significant differences in the verbal learn- and memory-test (VLMT) during the learning passage (U=36.500, Z=− 2.475, p=0.012) and in the subtest of the semantic fluency of Regensburg verbal fluency test (RWT) (t(25)=− 2.066, p=0.049) with better results for patients without dopaminagonistic medication. Pearson correlation analyses of LED in correlation with the clinical and cognitive dependent variables showed a significant higher PANSS total score in patients with higher LED medication (r=0.491, p=0.009). In addition, lower LED treatment was associated with significant higher scores in the impulsivity perseverance subtest (r=− 0.509, p=0.008).

Discussion In conclusion, we found lower LEDs to be correlated with a better perseverance in the impulsivity test and additional treatment with a dopamine agonist influenced some verbal learning tasks and the PANSS total score in patients with advanced PD. This should be considered prior to DBS surgery.

Supplementary Material



Publikationsverlauf

Eingereicht: 09. März 2024

Angenommen nach Revision: 23. Juli 2024

Artikel online veröffentlicht:
21. November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Poewe W, Seppi K, Tanner CM. et al. Parkinson disease. Nat Rev Dis Primer 2017; 3: 17013
  • 2 Hughes AJ, Daniel SE, Kilford L. et al. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181-184
  • 3 Yang W, Hamilton JL, Kopil C. et al. Current and projected future economic burden of Parkinson’s disease in the U.S. Npj Park Dis. 2020; 6: 15
  • 4 Schuepbach WMM, Rau J, Knudsen K. et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013; 368: 610-622
  • 5 Broeders M, de Bie RMA, Velseboer DC. et al. Evolution of mild cognitive impairment in Parkinson disease. Neurology 2013; 81: 346-352
  • 6 Aarsland D, Creese B, Politis M. et al. Cognitive decline in Parkinson disease. Nat Rev Neurol 2017; 13: 217-231
  • 7 Foltynie T, Brayne CEG, Robbins TW. et al. The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 2004; 127: 550-560
  • 8 Williams-Gray CH, Foltynie T, Brayne CEG. et al. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 2007; 130: 1787-1798
  • 9 Cools R. Dopaminergic modulation of cognitive function-implications for l-DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev 2006; 30: 1-23
  • 10 Voon V, Kubu C, Krack P. et al. Deep brain stimulation: Neuropsychological and neuropsychiatric issues. Mov Disord 2006; 21: S305-S327
  • 11 Munhoz RP, Picillo M, Fox SH. et al. Eligibility criteria for deep brain stimulation in Parkinson’s disease, tremor, and dystonia. Can J Neurol Sci J Can Sci Neurol 2016; 43: 462-471
  • 12 Massano J, Garrett C. Deep brain stimulation and cognitive decline in Parkinson’s disease: A clinical review. Front Neurol 2012; 3
  • 13 Höglinger G, Trenkwalder C. et al Parkinson-Krankheit, S2k-Leitlinie, in: Deutsche Gesellschaft für Neurologie (Hrsg.). Leitlinien für Diagnostik und Therapie in der Neurologie. 2023
  • 14 Nilsson FM, Kessing LV, Sørensen TM. et al. Major depressive disorder in Parkinson’s disease: A register-based study. Acta Psychiatr Scand 2002; 106: 202-211
  • 15 Aarsland D, Påhlhagen S, Ballard CG. et al. Depression in Parkinson disease – epidemiology, mechanisms and management. Nat Rev Neurol 2012; 8: 35-47
  • 16 Voon V, Krack P, Lang AE. et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain 2008; 131: 2720-2728
  • 17 Follett KA, Weaver FM, Stern M. et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 2010; 362: 2077-2091
  • 18 Samudra N, Patel N, Womack KB. et al. Psychosis in Parkinson disease: A review of etiology, phenomenology, and management. Drugs Aging 2016; 33: 855-863
  • 19 Schaeffer E, Berg D. Dopaminergic therapies for non-motor symptoms in Parkinson’s disease. CNS Drugs 2017; 31: 551-570
  • 20 Lehrl S. Mehrfach-Wortschatz-Intelligenztest:. MWT-B 5. Aufl., Balingen: Spitta. 2005
  • 21 Randolph C. Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Psychological Corporation San Antonio, TX. 1998
  • 22 Gold JM, Carpenter C, Randolph C. et al. Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Arch Gen Psychiatry 1997; 54: 159-165
  • 23 Helmstaedter C, Lendt M, Lux S. Veerbaler Lern- und Merkfähigkeitstest: VLMT. Göttingen:. Beltz Test. 2001
  • 24 Aschenbrenner S, Tucha O, Lange KW. Regensburger Wortflüssigkeits-Test: RWT. Göttingen; Bern; Toronto; Seattle:. Hogrefe, Verl. Für Psychologie. 2000
  • 25 Kohler J, Beck U, Hohnecker B. Neuropsychological assessment of basic planning competence. Journal of the International Neuropsychological Society. 2003 9. 519
  • 26 Wittchen -U H, Zaudig M, Fydrich T. Strukturiertes klinisches Interview für DSM-IV: SKID; eine deutschsprachige, erweiterte Bearbeitung der amerikanischen Originalversion des SCID. Göttingen [u.a.]: Hogrefe. 1997
  • 27 Jenkinson C, Fitzpatrick R, Peto V. et al. The Parkinson’s Disease Questionnaire (PDQ-39): Development and validation of a Parkinson’s disease summary index score. Age Ageing 1997; 26: 353-357
  • 28 Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987 13. 261-276
  • 29 Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 56
  • 30 Beck AT, Steer RA, Brown GK. Manual for The Beck Depression Inventory Second Edition (BDI-II). San Antonio: Psychological Corporation. 1996 a
  • 31 Yesavage JA. Geriatric depression scale. Psychopharmacol Bull 1988; 24: 709-711
  • 32 Whiteside SP, Lynam DR. The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personal Individ Differ 2001; 30: 669-689
  • 33 Goetz CG, Tilley BC, Shaftman SR. et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov Disord 2008; 23: 2129-2170
  • 34 Schade S, Mollenhauer B, Trenkwalder C. Levodopa equivalent dose conversion factors: An updated proposal including opicapone and safinamide. Mov Disord Clin Pract 2020; 7: 343-345
  • 35 Tomlinson CL, Stowe R, Patel S. et al. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease: Systematic review of LED reporting in PD. Mov Disord 2010; 25: 2649-2653
  • 36 Hagell P, Nygren C. The 39 item Parkinson’s disease questionnaire (PDQ-39) revisited: Implications for evidence based medicine. J Neurol Neurosurg Amp Psychiatry 2007; 78: 1191-1198
  • 37 Martínez-Martín P, Rodríguez-Blázquez C, Mario Alvarez et al. Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Parkinsonism Relat Disord 2015; 21: 50-54
  • 38 Herrera E, Cuetos F, Ribacoba R. Verbal fluency in Parkinson’s disease patients on/off dopamine medication. Neuropsychologia 2012; 50: 3636-3640
  • 39 Brusa L, Pavino V, Massimetti MC. et al. The effect of dopamine agonists on cognitive functions in non-demented early-mild Parkinson’s disease patients. Funct Neurol 2013; 28: 13-17
  • 40 Santangelo G, Piscopo F, Barone P. et al. Personality in Parkinson’s disease: Clinical, behavioural and cognitive correlates. J Neurol Sci 2017; 374: 17-25
  • 41 Volpato C, Signorini M, Meneghello F. et al. Cognitive and personality features in Parkinson disease: 2 sides of the same coin?. Cogn Behav Neurol 2009; 22: 258-263
  • 42 Bodi N, Keri S, Nagy H. et al. Reward-learning and the novelty-seeking personality: A between- and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain 2009; 132: 2385-2395
  • 43 Sieurin J, Gustavsson P, Weibull CE. et al. Personality traits and the risk for Parkinson disease: A prospective study. Eur J Epidemiol 2016; 31: 169-175
  • 44 Evans AH, Lawrence AD, Potts J. et al. Factors influencing susceptibility to compulsive dopaminergic drug use in Parkinson disease. Neurology 2005; 65: 1570-1574
  • 45 Voon V, Fernagut P-O, Wickens J. et al. Chronic dopaminergic stimulation in Parkinson’s disease: From dyskinesias to impulse control disorders. Lancet Neurol 2009; 8: 1140-1149
  • 46 Weintraub D. Impulse control disorders in Parkinson’s disease: Prevalence and possible risk factors. Parkinsonism Relat Disord 2009; 15: S110-S113
  • 47 Antonelli F, Ko JH, Miyasaki J. et al. Dopamine-agonists and impulsivity in Parkinson’s disease: Impulsive choices vs. impulsive actions. Hum Brain Mapp 2014; 35: 2499-2506
  • 48 Fénelon G, Alves G. Epidemiology of psychosis in Parkinson’s disease. J Neurol Sci 2010; 289: 12-17
  • 49 Williams DR, Warren JD, Lees AJ. Using the presence of visual hallucinations to differentiate Parkinson’s disease from atypical parkinsonism. J Neurol Neurosurg Psychiatry 2007; 79: 652-655
  • 50 Pollak P. Clozapine in drug induced psychosis in Parkinson’s disease: A randomised, placebo controlled study with open follow up. J Neurol Neurosurg Psychiatry 2004; 75: 689-695
  • 51 Munhoz RP, Teive HA, Eleftherohorinou H. et al. Demographic and motor features associated with the occurrence of neuropsychiatric and sleep complications of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2013; 84: 883-887
  • 52 Aarsland D, Marsh L, Schrag A. Neuropsychiatric symptoms in Parkinson’s disease. Mov Disord 2009; 24: 2175-2186
  • 53 Ishihara L, Brayne C. A systematic review of depression and mental illness preceding Parkinson’s disease. Acta Neurol Scand 2006; 113: 211-220
  • 54 Laux G. Parkinson and depression: Review and outlook. J Neural Transm 2022; 129: 601-608
  • 55 Leentjens AF. The role of dopamine agonists in the treatment of depression in patients with Parkinson’s disease: A systematic review. Drugs 2011; 71: 273-286
  • 56 MacCallum RC, Zhang S, Preacher KJ. et al. On the practice of dichotomization of quantitative variables. Psychol Methods 2002; 7: 19-40