Subscribe to RSS
DOI: 10.1055/a-2457-0229
Advances in the Light-Promoted Transformations of N-Heterocyclic Carbene Ligated Boryl Radicals
We are grateful to the National Natural Science Foundation of China (21971001) and the Distinguished Young Research Project of Anhui Higher Education Institution (2023AH020003) for financial support of the work we performed in this area.
![](https://www.thieme-connect.de/media/synthesis/EFirst/lookinside/thumbnails/ss-2024-d0380-sr_10-1055_a-2457-0229-1.jpg)
Abstract
Organoboron compounds are integral to modern life, with extensive applications in synthesis, materials science, medicine, and various other domains closely linked to human endeavors. NHC-BH3, noted for its stability, ease of synthesis, and high reactivity as a boryl radical precursor, has emerged as a key focus in boryl radical chemistry. Recently, the visible-light-induced single electron transfer (SET) and hydrogen atom transfer (HAT) processes have garnered considerable interest, presenting innovative strategies for generating boryl radicals from NHC-BH3. In the context of this review, our focus is on the synthesis of C–B and X–B bonds under visible light irradiation, facilitated by NHC-BH3. Furthermore, we explored the role of NHC-BH3 as a hydrogen donor or halogen atom transfer reagent in the construction of C–C bonds.
1 Introduction
2 Hydroboration
3 Borylation
4 Construction of X–B Bonds (X = N, O, S)
5 Halogen Atom Transfer Reagent and Hydrogen Donor
6 Conclusion
Key words
N-heterocyclic carbene boranes - photoredox catalysis - thiol catalysis - boryl radical - XAT reagentPublication History
Received: 05 September 2024
Accepted after revision: 29 October 2024
Accepted Manuscript online:
29 October 2024
Article published online:
02 December 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Sandford C, Aggarwal VK. Chem. Commun. 2017; 53: 5481
- 1b Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
- 1c Cuenca AB, Shishido R, Ito H, Fernández E. Chem. Soc. Rev. 2017; 46: 415
- 1d Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9
- 2a Marsden S. Angew. Chem. Int. Ed. 2006; 45: 2005
- 2b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 2c Brown HC, Subba Rao BC. J. Am. Chem. Soc. 1956; 78: 5694
- 3 Hušák M, Jegorov A, Rohlíček J, Fitch A, Czernek J, Kobera L, Brus J. Cryst. Growth Des. 2018; 18: 3616
- 4 Baker SJ, Ding CZ, Akama T, Zhang Y.-K, Hernandez V, Xia Y. Future Med. Chem. 2009; 1: 1275
- 5 Bush K, Bradford PA. Nat. Rev. Microbiol. 2019; 17: 295
- 6 Cheng H, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang X, Yoon J. Adv. Mater. 2023; 35: 2207546
- 7 Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. Chem. Rev. 2024; 124: 2441
- 8 Curran DP, Solovyev A, Brahmi MM, Fensterbank L, Malacria M, Lackte E. Angew. Chem. Int. Ed. 2011; 50: 10294
- 9a Taniguchi T. Eur. J. Org. Chem. 2019; 2019: 6308
- 9b Peng T.-Y, Zhang F.-L, Wang Y.-F. Acc. Chem. Res. 2023; 56: 169
- 10a Silvi M, Melchiorre P. Nature 2018; 554: 41
- 10b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 10c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 10d Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Chem. Soc. Rev. 2024; 53: 1068
- 11a Tian Y.-M, Guo X.-N, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
- 11b Phang Y, Jin J.-K, Zhang F.-L, Wang Y.-F. Chem. Commun. 2024; 60: 4275
- 12 Zhou N, Yuan X.-A, Zhao Y, Xie J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 3990
- 13 Zhu C, Dong J, Liu X, Gao L, Zhao Y, Xie J, Li S, Zhu C. Angew. Chem. Int. Ed. 2020; 59: 12817
- 14a Zimmerman HE. Acc. Chem. Res. 2012; 45: 16
- 14b Heravi MM, Fard MV, Faghihi Z. Curr. Org. Chem. 2015; 19: 1491
- 15 Dai W, Geib SJ, Curran DP. J. Am. Chem. Soc. 2020; 142: 6261
- 16 Li G, Huang G, Sun R, Curran DP, Dai W. Org. Lett. 2021; 23: 4353
- 17 Xie F, Mao Z, Curran DP, Liang H, Dai W. Angew. Chem. Int. Ed. 2023; 62: e202306846
- 18a Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. J. Am. Chem. Soc. 2022; 144: 12229
- 18b Song S, Qu J, Han P, Hulsey MJ, Zhang G, Wang Y, Wang S, Chen D, Lu J, Yan N. Nat. Commun. 2020; 11: 4899
- 18c Wu X, Fan X, Xie S, Lin J, Cheng J, Zhang Q, Chen L, Wang Y. Nat. Catal. 2018; 1: 772
- 19a Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Chem. Rev. 2022; 122: 6634
- 19b Pirali T, Serafini M, Cargnin S, Genazzani AA. J. Med. Chem. 2019; 62: 5276
- 20 Shi Q, Xu M, Chang R, Ramanathan D, Peñin B, Funes-Ardoiz I, Ye J. Nat. Commun. 2022; 13: 4453
- 21 Li F.-X, Wang X, Lin J, Lou X, Ouyang J, Hu G, Quan Y. Chem. Sci. 2023; 14: 6341
- 22a West JG, Huang D, Sorensen EJ. Nat. Commun. 2015; 6: 10093
- 22b Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
- 23 Wu X, Wang Y, Zhou M.-X, Chen Z, Peng X, Wang Z, Zeng Y.-F. Adv. Synth. Catal. 2023; 365: 3824
- 24 Jian Y, Wen F, Shang J, Li X, Liu Z, An Y, Wang Y. Org. Chem. Front. 2024; 11: 149
- 25a Kawamoto T, Morioka T, Noguchi K, Curran DP, Kamimura A. Org. Lett. 2021; 23: 1825
- 25b Miao Y.-Q, Pan Q.-J, Liu Z, Chen X. New J. Chem. 2022; 46: 19091
- 25c Liu X, Shen Y, Lu C, Jian Y, Xia S, Gao Z, Zheng Y, An Y, Wang Y. Chem. Commun. 2022; 58: 8380
- 25d Miao Y.-Q, Li X.-Y, Pan Q.-J, Ma Y, Kang J.-X, Ma Y.-N, Liu Z, Chen X. Green Chem. 2022; 24: 7113
- 26 Li D.-C, Zeng J.-H, Yang Y.-H, Zhan Z.-P. Org. Chem. Front. 2023; 10: 2075
- 27a Weaver JD, Senaweera S. Tetrahedron 2014; 70: 7413
- 27b Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
- 28 Xu W, Jiang H, Leng J, Ong H.-W, Wu J. Angew. Chem. Int. Ed. 2020; 59: 4009
- 29 Xia P.-J, Song D, Ye Z.-P, Hu Y.-Z, Xiao J.-A, Xiang H.-Y, Chen X.-Q, Yang H. Angew. Chem. Int. Ed. 2020; 59: 6706
- 30 Xia P.-J, Ye Z.-P, Hu Y.-Z, Xiao J.-A, Chen K, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2020; 22: 1742
- 31 Qi J, Zhang F.-L, Jin J.-K, Zhao Q, Li B, Liu L.-X, Wang Y.-F. Angew. Chem. Int. Ed. 2020; 59: 12876
- 32 For a review of organocatalytic asymmetric transformations of modified Morita–Baylis–Hillman adducts, see: Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
- 33 Zhu C, Gao S, Li W, Zhu C. Chem. Commun. 2020; 56: 15647
- 34 Zheng H, Lu H, Su C, Yang R, Zhao L, Liu X, Cao H. Chin. J. Chem. 2023; 41: 193
- 35 Miao Y.-Q, Pan Q.-J, Kang J.-X, Dai X, Liu Z, Chen X. Org. Chem. Front. 2024; 11: 1462
- 36 Pan Q.-J, Miao Y.-Q, Cao H.-J, Liu Z, Chen X. J. Org. Chem. 2024; 89: 5049
- 37a Pan X, Vallet A.-L, Schweizer S, Dahbi K, Delpech B, Blanchard N, Graff B, Geib SJ, Curran DP, Lalevée J, Lacôte E. J. Am. Chem. Soc. 2013; 135: 10484
- 37b Telitel S, Vallet A.-L, Schweizer S, Delpech B, Blanchard N, Morlet-Savary F, Graff B, Curran DP, Robert M, Lacôte E, Lalevée J. J. Am. Chem. Soc. 2013; 135: 16938
- 38 Zheng H, Xiong H, Su C, Cao H, Yao H, Liu X. RSC Adv. 2022; 12: 470
- 39 Xie Y, Zhang R, Chen Z.-L, Rong M, He H, Ni S, He X.-K, Xiao W.-J, Xuan J. Adv. Sci. 2024; 11: 2306728
- 40a Walton JC, Brahmi MM, Fensterbank L, Lacôte E, Malacria M, Chu Q, Ueng S.-H, Solovyev A, Curran DP. J. Am. Chem. Soc. 2010; 132: 2350
- 40b Ueng S.-H, Solovyev A, Yuan X, Geib SJ, Fensterbank L, Lacôte E, Malacria M, Newcomb M, Walton JC, Curran DP. J. Am. Chem. Soc. 2009; 131: 11256
- 41 Pan X, Lalevée J, Lacôte E, Curran DP. Adv. Synth. Catal. 2013; 355: 3522
- 42 Panferova LI, Zubkov MO, Kosobokov MD, Dilman AD. Org. Lett. 2022; 24: 8559
- 43 Ueng S.-H, Brahmi MM, Derat É, Fensterbank L, Lacôte E, Malacria M, Curran DP. J. Am. Chem. Soc. 2008; 130: 10082
- 44 Juliá F, Constantin T, Leonori D. Chem. Rev. 2022; 122: 2292
- 45 Supranovich VI, Levin VV, Struchkova MI, Korlyukov AA, Dilman AD. Org. Lett. 2017; 19: 3215
- 46 Wan T, Capaldo L, Ravelli D, Vitullo W, de Zwart FJ, Bruin B, Noël T. J. Am. Chem. Soc. 2023; 145: 991
- 47 Wan T, Ciszewski ŁW, Ravelli D, Capaldo L. Org. Lett. 2024; 26: 5839
- 48 Capaldo L, Wan T, Mulder R, Djossoua J, Noël T. Chem. Sci. 2024; 15: 14844