RSS-Feed abonnieren
DOI: 10.1055/a-2464-4354
Phytoestrogens and Sirtuin Activation for Renal Protection: A Review of Potential Therapeutic Strategies
We acknowledge the use of ChatGPT to correct or draft some sentences in the manuscript. We would like to acknowledge BioRender to create draft figures.
Abstract
Significant health and socio-economic challenges are posed by renal diseases, leading to millions of deaths annually. The costs associated with treating and caring for patients with renal diseases are considerable. Current therapies rely on synthetic drugs that often come with side effects. However, phytoestrogens, natural compounds, are emerging as promising renal protective agents. They offer a relatively safe, effective, and cost-efficient alternative to existing therapies. Phytoestrogens, being structurally similar to 17‐β‐estradiol, bind to estrogen receptors and produce both beneficial and, in some cases, harmful health effects. The activation of sirtuins has shown promise in mitigating fibrosis and inflammation in renal tissues. Specifically, SIRT1, which is a crucial regulator of metabolic activities, plays a role in protecting against nephrotoxicity, reducing albuminuria, safeguarding podocytes, and lowering reactive oxygen species in diabetic glomerular injury. Numerous studies have highlighted the ability of phytoestrogens to activate sirtuins, strengthen antioxidant defense, and promote mitochondrial biogenesis, playing a vital role in renal protection during kidney injury. These findings support further investigation into the potential role of phytoestrogens in renal protection. This manuscript reviews the potential of phytoestrogens such as resveratrol, genistein, coumestrol, daidzein, and formononetin in regulating sirtuin activity, particularly SIRT1, and thereby providing renal protection. Understanding these mechanisms is crucial for designing effective treatment strategies using naturally occurring phytochemicals against renal diseases.
Publikationsverlauf
Eingereicht: 02. Juli 2024
Angenommen nach Revision: 15. November 2024
Accepted Manuscript online:
03. Dezember 2024
Artikel online veröffentlicht:
22. Januar 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Lunney M, Alrukhaimi M, Ashuntantang GE, Bello AK, Bellorin-Font E, Gharbi MB, Jha V, Johnson DW, Kalantar-Zadeh K, Kazancioglu R, Olah ME. Guidelines, policies, and barriers to kidney care: Findings from a global survey. Kidney Int Suppl 2018; 8: 30-40
- 2 Griva K, Yoong RK, Nandakumar M, Rajeswari M, Khoo EY, Lee VY, Kang AW, Osborne RH, Brini S, Newman SP. Associations between health literacy and health care utilization and mortality in patients with coexisting diabetes and end‐stage renal disease: A prospective cohort study. Br J Health Psychol 2020; 25: 405-427
- 3 Bello AK, Alrukhaimi M, Ashuntantang GE, Bellorin-Font E, Gharbi MB, Braam B, Feehally J, Harris DC, Jha V, Jindal K, Johnson DW. Global overview of health systems oversight and financing for kidney care. Kidney Int Suppl 2018; 8: 41-51
- 4 Ellis P. The global burden of kidney disease. J Kidney Care 2020; 5: 102
- 5 Perico N, Remuzzi G. Chronic kidney disease: A research and public health priority. Nephrol Dial Transplant 2012; 27: 19-26
- 6 Watanabe R. Hyperkalemia in chronic kidney disease. Rev Assoc Med Bras 2020; 66: s31-s36
- 7 Hughes jr. CL. Phytochemical mimicry of reproductive hormones and modulation of herbivore fertility by phytoestrogens. Environ Health Perspect 1988; 78: 171-174
- 8 Bennetts HW, Underwood EJ, Shier FL. A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust Vet J 1946; 22: 2-12
- 9 Stafford HA. Roles of flavonoids in symbiotic and defense functions in legume roots. Bot Rev 1997; 63: 27-39
- 10 Scherr FF, Sarmah AK, Di HJ, Cameron KC. Degradation and metabolite formation of 17β-estradiol-3-sulphate in New Zealand pasture soils. Environ Int 2009; 35: 291-297
- 11 Hashem NM, Soltan YA. Impacts of phytoestrogens on livestock production: A review. Egypt J Nutr Health 2016; 19: 81-89
- 12 Torrens-Mas M, Roca P. Phytoestrogens for cancer prevention and treatment. Biology (Basel) 2020; 9: 427
- 13 Rietjens IM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol 2017; 174: 1263-1280
- 14 Cederroth CR, Nef S. Soy, phytoestrogens and metabolism: A review. Mol Cell Endocrinol 2009; 304: 30-42
- 15 Sridevi V, Naveen P, Karnam VS, Reddy PR, Arifullah M. Beneficiary and adverse effects of phytoestrogens: A potential constituent of plant-based diet. Curr Pharm Des 2021; 27: 802-815
- 16 Zhao E, Mu Q. Phytoestrogen biological actions on Mammalian reproductive system and cancer growth. Sci Pharm 2011; 79: 1-20
- 17 Jungbauer A, Medjakovic S. Phytoestrogens and the metabolic syndrome. J Steroid Biochem Mol Biol 2014; 139: 277-289
- 18 Domańska A, Orzechowski A, Litwiniuk A, Kalisz M, Bik W, Baranowska-Bik A. The beneficial role of natural endocrine disruptors: Phytoestrogens in alzheimerʼs disease. Oxid Med Cell Longev 2021; 2021: 3961445
- 19 Andres S, Abraham K, Appel KE, Lampen A. Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol 2011; 41: 463-506
- 20 Rietjens IM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol 2017; 174: 1263-1280
- 21 Guarente L. Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol 2011; 76: 81-90
- 22 Hershberger KA, Martin AS, Hirschey MD. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol 2017; 13: 213-225
- 23 Bartoli-Leonard F, Wilkinson FL, Schiro A, Serracino Inglott F, Alexander MY, Weston R. Loss of SIRT1 in diabetes accelerates DNA damage-induced vascular calcification. Cardiovasc Res 2021; 117: 836-849
- 24 Xu J, Liu LQ, Xu LL, Xing Y, Ye S. Metformin alleviates renal injury in diabetic rats by inducing Sirt1/FoxO1 autophagic signal axis. Clin Exp Pharmacol Physiol 2020; 47: 599-608
- 25 Vassilopoulos A, Fritz KS, Petersen DR, Gius D. The human sirtuin family: Evolutionary divergences and functions. Hum Genomics 2011; 5: 1-12
- 26 Costantini S, Sharma A, Raucci R, Costantini M, Autiero I, Colonna G. Genealogy of an ancient protein family: The Sirtuins, a family of disordered members. BMC Evol Biol 2013; 13: 1-19
- 27 Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012; 13: 225-238
- 28 Davenport AM, Huber FM, Hoelz A. Structural and functional analysis of human SIRT1. J Mol Biol 2014; 426: 526-541
- 29 Kilic U, Gok O, Erenberk U, Dundaroz MR, Torun E, Kucukardali Y, Elibol-Can B, Uysal O, Dundar T. A remarkable age-related increase in SIRT1 protein expression against oxidative stress in elderly: SIRT1 gene variants and longevity in human. PLoS One 2015; 10: e0117954
- 30 Arunachalam G, Samuel SM, Marei I, Ding H, Triggle CR. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol 2014; 171: 523-535
- 31 Vassallo PF, Simoncini S, Ligi I, Chateau AL, Bachelier R, Robert S, Morere J, Fernandez S, Guillet B, Marcelli M, Tellier E, Pascal A, Simeoni U, Anfosso F, Magdinier F, Dignat-George F, Sabatier F. Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood 2014; 123: 2116-2126
- 32 Moniot S, Schutkowski M, Steegborn C. Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J Struct Biol 2013; 182: 136-143
- 33 Cha Y, Han MJ, Cha HJ, Zoldan J, Burkart A, Jung JH, Jang Y, Kim CH, Jeong HC, Kim BG, Langer R, Kahn CR, Guarente L, Kim KS. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol 2017; 19: 445-456
- 34 Singh P, Hanson PS, Morris CM. Sirtuin-2 protects neural cells from oxidative stress and is elevated in neurodegeneration. Parkinsons Dis 2017; 2017: 2643587
- 35 Jin L, Wei W, Jiang Y, Peng H, Cai J, Mao C, Dai H, Choy W, Bemis JE, Jirousek MR, Milne JC, Westphal CH, Perni RB. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J Biol Chem 2009; 284: 24394-24405
- 36 Chen T, Ma C, Fan G, Liu H, Lin X, Li J, Li N, Wang S, Zeng M, Zhang Y, Bu P. SIRT3 protects endothelial cells from high glucose-induced senescence and dysfunction via the p 53 pathway. Life Sci 2021; 264: 118724
- 37 Hor JH, Santosa MM, Lim V, Ho BX, Taylor A, Khong ZJ, Ravits J, Fan Y, Liou YC, Soh BS, Ng SY. ALS motor neurons exhibit hallmark metabolic defects that are rescued by SIRT3 activation. Cell Death Differ 2021; 28: 1379-1397
- 38 Mitra N, Dey S. Biochemical characterization of mono ADP ribosyl transferase activity of human sirtuin SIRT7 and its regulation. Arch Biochem Biophys 2020; 680: 108226
- 39 Liu M, Wang Z, Ren M, Yang X, Liu B, Qi H, Yu M, Song S, Chen S, Liu L, Zhang Y, Zou J, Zhu WG, Yin Y, Luo J. SIRT4 regulates PTEN stability through IDE in response to cellular stresses. FASEB J 2019; 33: 5535-5547
- 40 Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R, Plotnikov AN. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 2007; 15: 377-389
- 41 Guo D, Song X, Guo T, Gu S, Chang X, Su T, Yang X, Liang B, Huang D. Vimentin acetylation is involved in SIRT5-mediated hepatocellular carcinoma migration. Am J Cancer Res 2018; 8: 2453-2466
- 42 Zhang M, Wu J, Sun R, Tao X, Wang X, Kang Q, Wang H, Zhang L, Liu P, Zhang J, Xia Y, Zhao Y, Yang Y, Xiong Y, Guan KL, Zou Y, Ye D. SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS One 2019; 14: e0211796
- 43 Chang L, Xi L, Liu Y, Liu R, Wu Z, Jian Z. SIRT5 promotes cell proliferation and invasion in hepatocellular carcinoma by targeting E2F1. Mol Med Rep 2018; 17: 342-349
- 44 Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM. Structure and biochemical functions of SIRT6. J Biol Chem 2011; 286: 14575-14587
- 45 Hou KL, Lin SK, Chao LH, Hsiang-Hua Lai E, Chang CC, Shun CT, Lu WY, Wang JH, Hsiao M, Hong CY, Kok SH. Sirtuin 6 suppresses hypoxia-induced inflammatory response in human osteoblasts via inhibition of reactive oxygen species production and glycolysis-A therapeutic implication in inflammatory bone resorption. Biofactors 2017; 43: 170-180
- 46 Pan H, Guan D, Liu X, Li J, Wang L, Wu J, Zhou J, Zhang W, Ren R, Zhang W, Li Y, Yang J, Hao Y, Yuan T, Yuan G, Wang H, Ju Z, Mao Z, Li J, Qu J, Liu GH. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 2016; 26: 190-205
- 47 Priyanka A, Solanki V, Parkesh R, Thakur KG. Crystal structure of the N-terminal domain of human SIRT7 reveals a three-helical domain architecture. Proteins 2016; 84: 1558-1563
- 48 Kaiser A, Schmidt M, Huber O, Frietsch JJ, Scholl S, Heidel FH, Hochhaus A, Müller JP, Ernst T. SIRT7: An influence factor in healthy aging and the development of age-dependent myeloid stem-cell disorders. Leukemia 2020; 34: 2206-2216
- 49 Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yao Y, Zhang W, Song M, Liu GH, Qu J. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 2020; 11: 483-504
- 50 Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr Neuropharmacol 2022; 20: 158
- 51 Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M. Shedding light on structure, function and regulation of human sirtuins: A comprehensive review. 3 Biotech 2023; 13: 1-15
- 52 Wątroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci 2016; 61: 52-62
- 53 Xie W, Zhu T, Zhou P, Xu H, Meng X, Ding T, Nan F, Sun G, Sun X. Notoginseng leaf triterpenes ameliorates OGD/R-induced neuronal injury via SIRT1/2/3-Foxo3a-MnSOD/PGC-1α signaling pathways mediated by the NAMPT-NAD pathway. Oxid Med Cell Longev 2020; 2020: 7308386
- 54 Revollo JR, Körner A, Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J. Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab 2007; 6: 363-375
- 55 Rehan L, Laszki-Szcząchor K, Sobieszczańska M, Polak-Jonkisz D. SIRT1 and NAD as regulators of ageing. Life Sci 2014; 105: 1-6
- 56 Yoon MJ, Yoshida M, Johnson S, Takikawa A, Usui I, Tobe K, Nakagawa T, Yoshino J, Imai SI. SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice. Cell Metab 2015; 21: 706-717
- 57 Okabe K, Yaku K, Tobe K, Nakagawa T. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci 2019; 26: 1-3
- 58 Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem 2014; 25: 66-72
- 59 Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 2021; 22: 119-141
- 60 Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 2018; 28: 643-661
- 61 Garg G, Singh AK, Singh S, Rizvi SI. Promising drug discovery strategies for sirtuin modulators: What lessons have we learnt?. Expert Opin Drug Discov 2021; 16: 915-927
- 62 Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y. Sirtuins in metabolism, DNA repair and cancer. J Exp Clin Cancer Res 2016; 35: 182
- 63 Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res 2017; 42: 876-890
- 64 Shahgaldi S, Kahmini FR. A comprehensive review of Sirtuins: With a major focus on redox homeostasis and metabolism. Life Sci 2021; 282: 119803
- 65 Wang Y, Zheng ZJ, Jia YJ, Yang YL, Xue YM. Role of p 53/miR-155-5 p/sirt1 loop in renal tubular injury of diabetic kidney disease. J Transl Med 2018; 16: 146
- 66 Escalona-Garrido C, Vázquez P, Mera P, Zagmutt S, García-Casarrubios E, Montero-Pedrazuela A, Rey-Stolle F, Guadaño-Ferraz A, Rupérez FJ, Serra D, Herrero L. Moderate SIRT1 overexpression protects against brown adipose tissue inflammation. Mol Metab 2020; 42: 101097
- 67 Cheng HL, Mostoslavsky R, Saito SI, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF. Developmental defects and p 53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 2003; 100: 10794-10799
- 68 Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009; 9: 327-338
- 69 Bordone L, Cohen D, Robinson A, Motta MC, Van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo J, Gu W. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007; 6: 759-767
- 70 Hong YA, Kim JE, Jo M, Ko GJ. The role of sirtuins in kidney diseases. Int J Mol Sci 2020; 21: 6686
- 71 Ogura Y, Kitada M, Koya D. Sirtuins and renal oxidative stress. Antioxidants 2021; 10: 1198
- 72 Boutant M, Cantó C. SIRT1 in Metabolic Health and Disease. In: Houtkooper R. editor Sirtuins. Proteins and Cell Regulation, Volume 10. Dordrecht: Springer; 2016
- 73 Packer M. Interplay of adenosine monophosphate‐activated protein kinase/sirtuin‐1 activation and sodium influx inhibition mediates the renal benefits of sodium‐glucose co‐transporter‐2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020; 22: 734-742
- 74 Koyama T, Kume S, Koya D, Araki SI, Isshiki K, Chin-Kanasaki M, Sugimoto T, Haneda M, Sugaya T, Kashiwagi A, Maegawa H. SIRT3 attenuates palmitate-induced ROS production and inflammation in proximal tubular cells. Free Radic Biol Med 2011; 51: 1258-1267
- 75 Sears SM, Siskind LJ. Potential therapeutic targets for cisplatin-induced kidney injury: Lessons from other models of AKI and fibrosis. J Am Soc Nephrol 2021; 32: 1559-1567
- 76 Kosgei VJ, Coelho D, Guéant-Rodriguez RM, Guéant JL. Sirt1-PPARS cross-talk in complex metabolic diseases and inherited disorders of the one carbon metabolism. Cells 2020; 9: 1882
- 77 Jung YJ, Lee AS, Nguyen-Thanh T, Kim D, Kang KP, Lee S, Park SK, Kim W. SIRT2 regulates LPS-induced renal tubular CXCL2 and CCL2 expression. J Am Soc Nephrol 2015; 26: 1549-1560
- 78 Ponnusamy M, Zhou X, Yan Y, Tang J, Tolbert E, Zhao TC, Gong R, Zhuang S. Blocking sirtuin 1 and 2 inhibits renal interstitial fibroblast activation and attenuates renal interstitial fibrosis in obstructive nephropathy. J Pharmacol Exp Ther 2014; 350: 243-256
- 79 Lan X, Zhao J, Zhang Y, Chen Y, Liu Y, Xu F. Oxymatrine exerts organ-and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside. Pharmacol Res 2020; 151: 104541
- 80 Vasko R, Xavier S, Chen J, Lin CH, Ratliff B, Rabadi M, Maizel J, Tanokuchi R, Zhang F, Cao J, Goligorsky MS. Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: Relevance to fibrosis of vascular senescence. J Am Soc Nephrol 2014; 25: 276-291
- 81 Simic P, Williams EO, Bell EL, Gong JJ, Bonkowski M, Guarente L. SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep 2013; 3: 1175-1186
- 82 Kim DH, Bang E, Jung HJ, Noh SG, Yu BP, Choi YJ, Chung HY. Anti-aging effects of Calorie Restriction (CR) and CR mimetics based on the senoinflammation concept. Nutrients 2020; 12: 422
- 83 Singh G, Krishan P. Dietary restriction regimens for fighting kidney disease: Insights from rodent studies. Exp Gerontol 2019; 128: 110738
- 84 Gong L, He J, Sun X, Li L, Zhang X, Gan H. Activation of sirtuin1 protects against ischemia/reperfusion-induced acute kidney injury. Biomed Pharmacother 2020; 125: 110021
- 85 Shang G, Gao P, Zhao Z, Chen Q, Jiang T, Zhang N, Li H. 3, 5-Diiodo-l-thyronine ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. Biochim Biophys Acta 2013; 1832: 674-684
- 86 Liu R, Zhong Y, Li X, Chen H, Jim B, Zhou MM, Chuang PY, He JC. Role of transcription factor acetylation in diabetic kidney disease. Diabetes 2014; 63: 2440-2453
- 87 Ma B, Zhu Z, Zhang J, Ren C, Zhang Q. Aucubin alleviates diabetic nephropathy by inhibiting NF-κB activation and inducing SIRT1/SIRT3-FOXO3a signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. J Funct Foods 2020; 64: 103702
- 88 Zhong Y, Lee K, He JC. SIRT1 is a potential drug target for the treatment of diabetic kidney disease. Front Endocrinol 2018; 9: 624
- 89 Hong Q, Zhang L, Das B, Li Z, Liu B, Cai G, Chen X, Chuang PY, He JC, Lee K. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int 2018; 93: 1330-1343
- 90 Ozkan Kurtgoz P, Karakose S, Cetinkaya CD, Erkus E, Guney I. Evaluation of sirtuin 1 (SIRT1) levels in autosomal dominant polycystic kidney disease. Int Urol Nephrol 2022; 54: 131-135
- 91 Zhou X, Fan LX, Li K, Ramchandran R, Calvet JP, Li X. SIRT2 regulates ciliogenesis and contributes to abnormal centrosome amplification caused by the loss of polycystin-1. Hum Mol Genet 2014; 23: 1644-1655
- 92 Tikoo K, Singh K, Kabra D, Sharma V, Gaikwad A. Change in histone H3 phosphorylation, MAP kinase p 38, SIR 2, and p 53 expression by resveratrol in preventing streptozotocin-induced type I diabetic nephropathy. Free Radic Res 2008; 42: 397-404
- 93 Su M, Zhao W, Xu S, Weng J. Resveratrol in treating diabetes and its cardiovascular complications: A review of its mechanisms of action. Antioxidants (Basel) 2022; 11: 1085
- 94 Zhang T, Chi Y, Kang Y, Lu H, Niu H, Liu W, Li Y. Resveratrol ameliorates podocyte damage in diabetic mice via SIRT1/PGC-1alpha mediated attenuation of mitochondrial oxidative stress. J Cell Physiol 2019; 234: 5033-5043
- 95 Liu Z, Shi B, Wang Y, Xu Q, Gao H, Ma J, Jiang X, Yu W. Curcumin alleviates aristolochic acid nephropathy based on SIRT1/Nrf2/HO-1 signaling pathway. Toxicology 2022; 479: 153297
- 96 Li Y, Ye Z, Lai W, Rao J, Huang W, Zhang X, Yao Z, Lou T. Activation of sirtuin 3 by silybin attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Front Pharmacol 2017; 8: 178
- 97 Mao RW, He SP, Lan JG, Zhu WZ. Honokiol ameliorates cisplatin-induced acute kidney injury via inhibition of mitochondrial fission. Br J Pharmacol 2022; 179: 3886-3904
- 98 Huang X, Shi Y, Chen H, Le R, Gong X, Xu K, Zhu Q, Shen F, Chen Z, Gu X, Chen X, Chen X. Isoliquiritigenin prevents hyperglycemia-induced renal injuries by inhibiting inflammation and oxidative stress via SIRT1-dependent mechanism. Cell Death Dis 2020; 11: 1040
- 99 Alzahrani S, Zaitone SA, Said E, El-Sherbiny M, Ajwah S, Alsharif SY, Elsherbiny NM. Protective effect of isoliquiritigenin on experimental diabetic nephropathy in rats: Impact on Sirt-1/NFkappaB balance and NLRP3 expression. Int Immunopharmacol 2020; 87: 106813
- 100 Zhang Y, Connelly KA, Thai K, Wu X, Kapus A, Kepecs D, Gilbert RE. Sirtuin 1 activation reduces transforming growth factor-β1-induced fibrogenesis and affords organ protection in a model of progressive, experimental kidney and associated cardiac disease. Am J Pathol 2017; 187: 80-90
- 101 He W, Wang Y, Zhang MZ, You L, Davis LS, Fan H, Yang HC, Fogo AB, Zent R, Harris RC, Breyer MD, Hao CM. Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 2010; 120: 1056-1068
- 102 Hasegawa K, Sakamaki Y, Tamaki M, Wakino S. Nicotinamide mononucleotide ameliorates adriamycin-induced renal damage by epigenetically suppressing the NMN/NAD consumers mediated by Twist2. Sci Rep 2022; 12: 13712
- 103 Yasuda I, Hasegawa K, Sakamaki Y, Muraoka H, Kawaguchi T, Kusahana E, Ono T, Kanda T, Tokuyama H, Wakino S, Itoh H. Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy. J Am Soc Nephrol 2021; 32: 1355-7130
- 104 Ahmed HH, Taha FM, Omar HS, Elwi HM, Abdelnasser M. Hydrogen sulfide modulates SIRT1 and suppresses oxidative stress in diabetic nephropathy. Mol Cell Biochem 2019; 457: 1-9
- 105 Khader A, Yang WL, Kuncewitch M, Jacob A, Prince JM, Asirvatham JR, Nicastro J, Coppa GF, Wang P. Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion. Transplantation 2014; 98: 148-156
- 106 Ma F, Wu J, Jiang Z, Huang W, Jia Y, Sun W, Wu H. P53/NRF2 mediates SIRT1′s protective effect on diabetic nephropathy. Biochim Biophys Acta Mol Cell Res 2019; 1866: 1272-1281
- 107 Anandhi Senthilkumar H, Fata JE, Kennelly EJ. Phytoestrogens: The current state of research emphasizing breast pathophysiology. Phytother Res 2018; 32: 1707-1719
- 108 Yang R, Jia Q, Mehmood S, Ma S, Liu X. Genistein ameliorates inflammation and insulin resistance through the mediation of gut microbiota composition in type 2 diabetic mice. Eur J Nutr 2021; 60: 2155-2168
- 109 Struja T, Richard A, Linseisen J, Eichholzer M, Rohrmann S. The association between urinary phytoestrogen excretion and components of the metabolic syndrome in NHANES. Eur J Nutr 2014; 53: 1371-1381
- 110 Yamagata K, Yamori Y. Potential effects of soy isoflavones on the prevention of metabolic syndrome. Molecules 2021; 26: 5863
- 111 Ghadimi D, Hemmati M, Karimi N, Khadive T. Soy isoflavone genistein is a potential agent for metabolic syndrome treatment: A narrative review. J Adv Med Biomed Res 2020; 28: 64-75
- 112 Huang G, Xu J, Guo TL. Isoflavone daidzein regulates immune responses in the B6C3F1 and non-obese diabetic (NOD) mice. Int Immunopharmacol 2019; 71: 277-284
- 113 Shen HH, Huang SY, Kung CW, Chen SY, Chen YF, Cheng PY, Lam KK, Lee YM. Genistein ameliorated obesity accompanied with adipose tissue browning and attenuation of hepatic lipogenesis in ovariectomized rats with a high-fat diet. J Nutr Biochem 2019; 67: 111-122
- 114 Li Y, Huang J, Yan Y, Liang J, Liang Q, Lu Y, Zhao L, Li H. Preventative effects of resveratrol and estradiol on streptozotocin-induced diabetes in ovariectomized mice and the related mechanisms. PLoS One 2018; 13: e0204499
- 115 Tomobe K, Philbrick DJ, Ogborn MR, Takahashi H, Holub BJ. Effect of dietary soy protein and genistein on disease progression in mice with polycystic kidney disease. Am J Kidney Dis 1998; 31: 55-61
- 116 Aukema HM, Housini I, Rawling JM. Dietary soy protein effects on inherited polycystic kidney disease are influenced by gender and protein level. J Am Soc Nephrol 1999; 10: 300-308
- 117 Ishimoto Y, Inagi R. Mitochondria: A therapeutic target in acute kidney injury. Nephrol Dial Transplant 2016; 31: 1062-1069
- 118 Al-Hussaini H, Kilarkaje N. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys. Toxicol Appl Pharmacol 2018; 339: 97-109
- 119 Li KX, Ji MJ, Sun HJ. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy. Gene 2021; 780: 145532
- 120 Tian X, Zhang S, Zhang Q, Kang L, Ma C, Feng L, Li S, Li J, Yang L, Liu J, Qi Z. Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinoma. J Nutr Biochem 2020; 85: 108489
- 121 Rehman K, Ali MB, Akash MS. Genistein enhances the secretion of glucagon-like peptide-1 (GLP-1) via downregulation of inflammatory responses. Biomed Pharmacother 2019; 112: 108670
- 122 Oza MJ, Kulkarni YA. Formononetin attenuates kidney damage in type 2 diabetic rats. Life Sci 2019; 219: 109-121
- 123 Lee H, Lee D, Kang KS, Song JH, Choi YK. Inhibition of intracellular ROS accumulation by formononetin attenuates cisplatin-mediated apoptosis in LLC-PK1 cells. Int J Mol Sci 2018; 19: 813
- 124 Jia Q, Yang R, Liu XF, Ma SF, Wang L. Genistein attenuates renal fibrosis in streptozotocin-induced diabetic rats. Mol Med Rep 2019; 19: 423-431
- 125 Wang Y, Li Y, Zhang T, Chi Y, Liu M, Liu Y. Genistein and Myd88 activate autophagy in high glucose-induced renal podocytes in vitro . Med Sci Monit 2018; 24: 4823
- 126 Živanović J, Jarić I, Ajdžanović V, Mojić M, Miler M, Šošić-Jurjević B, Milošević V, Filipović B. Daidzein upregulates anti-aging protein Klotho and NaPi 2a cotransporter in a rat model of the andropause. Ann Anat 2019; 221: 27-37
- 127 Suliman FA, Khodeer DM, Ibrahiem A, Mehanna ET, El-Kherbetawy MK, Mohammad HM, Zaitone SA, Moustafa YM. Renoprotective effect of the isoflavonoid biochanin A against cisplatin induced acute kidney injury in mice: Effect on inflammatory burden and p 53 apoptosis. Int Immunopharmacol 2018; 61: 8-19
- 128 Galal AA, Mohamed AA, Khater SI, Metwally MM. Beneficial role of biochanin A on cutaneous and renal tissues of ovariectomized rats treated with anastrozole. Life Sci 2018; 201: 9-16
- 129 Weinberg JM. Mitochondrial biogenesis in kidney disease. J Am Soc Nephrol 2011; 22: 431-436
- 130 Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS, Chung S, Koh SH, Shin SJ, Choi BS, Kim HW. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK–SIRT1–PGC1α axis in db/db mice. Diabetologia 2013; 56: 204-217
- 131 Mitra R, Nogee DP, Zechner JF, Yea K, Gierasch CM, Kovacs A, Medeiros DM, Kelly DP, Duncan JG. The transcriptional coactivators, PGC-1α and β, cooperate to maintain cardiac mitochondrial function during the early stages of insulin resistance. J Mol Cell Cardiol 2012; 52: 701-710
- 132 Zhang T, Chi Y, Ren Y, Du C, Shi Y, Li Y. Resveratrol reduces oxidative stress and apoptosis in podocytes via Sir2-related enzymes, sirtuins1 (SIRT1)/peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) axis. Med Sci Monit 2019; 25: 1220
- 133 Liu S, Zhao M, Zhou Y, Wang C, Yuan Y, Li L, Bresette W, Chen Y, Cheng J, Lu Y, Liu J. Resveratrol exerts dose-dependent anti-fibrotic or pro-fibrotic effects in kidneys: A potential risk to individuals with impaired kidney function. Phytomedicine 2019; 57: 223-235
- 134 Rumman M, Pandey S, Singh B, Gupta M, Ubaid S, Mahdi AA. Genistein prevents hypoxia-induced cognitive dysfunctions by ameliorating oxidative stress and inflammation in the hippocampus. Neurotox Res 2021; 39: 1123-1133
- 135 Canyilmaz E, Uslu GH, Bahat Z, Kandaz M, Mungan S, Haciislamoglu E, Mentese A, Yoney A. Comparison of the effects of melatonin and genistein on radiation induced nephrotoxicity: Results of an experimental study. Biomed Rep 2016; 4: 45-50
- 136 Zhang HP, Zhao JH, Yu HX, Guo DX. Genistein ameliorated endothelial nitric oxidase synthase uncoupling by stimulating sirtuin-1 pathway in ox-LDL-injured HUVECs. Environ Toxicol Pharmacol 2016; 42: 118-124
- 137 Zhang H, Zhao Z, Pang X, Yang J, Yu H, Zhang Y, Zhou H, Zhao J. MiR-34a/sirtuin-1/foxo3a is involved in genistein protecting against ox-LDL-induced oxidative damage in HUVECs. Toxicol Lett 2017; 277: 115-122
- 138 Hirasaka K, Maeda T, Ikeda C, Haruna M, Kohno S, Abe T, Ochi A, Mukai R, Oarada M, Eshima-Kondo S, Ohno A. Isoflavones derived from soy beans prevent MuRF1-mediated muscle atrophy in C2C12 myotubes through SIRT1 activation. J Nutr Sci Vitaminol 2013; 59: 317-324
- 139 Li WF, Yang K, Zhu P, Zhao HQ, Song YH, Liu KC, Huang WF. Genistein ameliorates ischemia/reperfusion-induced renal injury in a SIRT1-dependent manner. Nutrients 2017; 9: 403
- 140 Rasbach KA, Schnellmann RG. PGC-1α over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem Biophys Res Commun 2007; 355: 734-739
- 141 Yoshino M, Naka A, Sakamoto Y, Shibasaki A, Toh M, Tsukamoto S, Kondo K, Iida K. Dietary isoflavone daidzein promotes Tfam expression that increases mitochondrial biogenesis in C2C12 muscle cells. J Nutr Biochem 2015; 26: 1193-1199
- 142 Seo DB, Jeong HW, Lee SJ, Lee SJ. Coumestrol induces mitochondrial biogenesis by activating Sirt1 in cultured skeletal muscle cells. J Agric Food Chem 2014; 62: 4298-4305
- 143 Hu H, Li H. Prunetin inhibits lipopolysaccharide-induced inflammatory cytokine production and MUC5AC expression by inactivating the TLR4/MyD88 pathway in human nasal epithelial cells. Biomed Pharmacother 2018; 106: 1469-1477
- 144 Yang G, Ham I, Choi HY. Anti-inflammatory effect of prunetin via the suppression of NF-κB pathway. Food Chem Toxicol 2013; 58: 124-132
- 145 Piegholdt S, Rimbach G, Wagner AE. The phytoestrogen prunetin affects body composition and improves fitness and lifespan in male Drosophila melanogaster . FASEB J 2016; 30: 948-958
- 146 Mu H, Bai YH, Wang ST, Zhu ZM, Zhang YW. Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover). Phytomedicine 2009; 16: 314-319
- 147 Kaczmarczyk-Sedlak I, Wojnar W, Zych M, Ozimina-Kamińska E, Taranowicz J, Siwek A. Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. Evid Based Complement Alternat Med 2013; 2013: 457052
- 148 Yang S, Liu M, Chen Y, Ma C, Liu L, Zhao B, Wang Y, Li X, Zhu Y, Gao X, Kong D. NaoXinTong capsules inhibit the development of diabetic nephropathy in db/db mice. Sci Rep 2018; 8: 9158
- 149 Hwang JS, Kang ES, Han SG, Lim DS, Paek KS, Lee CH, Seo HG. Formononetin inhibits lipopolysaccharide-induced release of high mobility group box 1 by upregulating SIRT1 in a PPARδ-dependent manner. PeerJ 2018; 6: e4208
- 150 Oza MJ, Kulkarni YA. Formononetin treatment in type 2 diabetic rats reduces insulin resistance and hyperglycemia. Front Pharmacol 2018; 9: 739
- 151 Andersen C, Kotowska D, Tortzen CG, Kristiansen K, Nielsen J, Petersen RK. 2-(2-Bromophenyl)-formononetin and 2-heptyl-formononetin are PPARγ partial agonists and reduce lipid accumulation in 3 T3-L1 adipocytes. Bioorg Med Chem 2014; 22: 6105-6111
- 152 Tham DM, Gardner CD, Haskell WL. Potential health benefits of dietary phytoestrogens: A review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 1998; 83: 2223-2235
- 153 Macon MB, Fenton SE. Endocrine disruptors and the breast: Early life effects and later life disease. J Mammary Gland Biol Neoplasia 2013; 18: 43-61
- 154 El Arabey AA. Negative response of phytoestrogens of pomegranate flower extract against cisplatin-induced nephrotoxicity in female rats. Int J Prev Med 2016; 7: 89
- 155 Valsecchi AE, Franchi S, Panerai AE, Sacerdote P, Trovato AE, Colleoni M. Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: Anti‐inflammatory and antioxidant activity. J Neurochem 2008; 107: 230-240
- 156 Liu X, Chen A, Liang Q, Yang X, Dong Q, Fu M, Yan J. Spermidine inhibits vascular calcification in chronic kidney disease through modulation of SIRT1 signaling pathway. Aging Cell 2021; 20: e13377
- 157 Wang M, Yang L, Yang J, Wang C. Shen Shuai IIRecipe attenuates renal injury and fibrosis in chronic kidney disease by regulating NLRP3 inflammasome and Sirt1/Smad3 deacetylation pathway. BMC Complement Altern Med 2019; 19: 107
- 158 Li P, Song X, Zhang D, Guo N, Wu C, Chen K, Huang X. Resveratrol improves left ventricular remodeling in chronic kidney disease via Sirt1‐mediated regulation of FoxO1 activity and MnSOD expression. Biofactors 2020; 46: 168-179
- 159 Wang R, Yuan W, Li L, Lu F, Zhang L, Gong H, Huang X. Resveratrol ameliorates muscle atrophy in chronic kidney disease via the axis of SIRT1/FoxO1. Phytother Res 2022; 36: 3265-3275
- 160 Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol 2020; 500: 110628
- 161 Li WF, Yang K, Zhu P, Zhao HQ, Song YH, Liu KC, Huang WF. Genistein ameliorates ischemia/reperfusion-induced renal injury in a SIRT1-dependent manner. Nutrients 2017; 9: 403
- 162 Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid Med Cell Longev 2016; 2016: 2986796
- 163 He FF, You RY, Ye C, Lei CT, Tang H, Su H, Zhang C. Inhibition of SIRT2 alleviates fibroblast activation and renal tubulointerstitial fibrosis via MDM2. Cell Physiol Biochem 2018; 46: 451-460
- 164 Jung YJ, Lee AS, Nguyen-Thanh T, Kim D, Kang KP, Lee S, Kim W. SIRT2 regulates LPS-induced renal tubular CXCL2 and CCL2 expression. J Am Soc Nephrol 2015; 26: 1549-1560
- 165 Han X, Sun Z. Adult mouse kidney stem cells orchestrate the De Novo assembly of a nephron via Sirt2‐modulated canonical Wnt/β‐catenin signaling. Adv Sci 2022; 9: 2104034
- 166 Koyama T, Kume S, Koya D, Araki SI, Isshiki K, Chin-Kanasaki M, Uzu T. SIRT3 attenuates palmitate-induced ROS production and inflammation in proximal tubular cells. Free Radic Biol Med 2011; 51: 1258-1267
- 167 Wu X, Liu M, Wei G, Guan Y, Duan J, Xi M, Wang J. Renal protection of rhein against 5/6 nephrectomied-induced chronic kidney disease: Role of SIRT3-FOXO3α signalling pathway. J Pharm Pharmacol 2020; 72: 699-708
- 168 Liu X, Deng R, Wei X, Wang Y, Weng J, Lao Y, Li S. Jian-Pi-Yi-Shen formula enhances perindopril inhibition of chronic kidney disease progression by activation of SIRT3, modulation of mitochondrial dynamics, and antioxidant effects. Biosci Rep 2021; 41: BSR20211598
- 169 Jiao X, Zhang X, Wu D. The protective effect of kaempferol on high glucose-stimulated renal tubular epithelial cells. Research Square 2022.
- 170 Xu X, Zhang L, Hua F, Zhang C, Mi X, Zhou F. FOXM1-activated SIRT4 inhibits NF-κB signaling and NLRP3 inflammasome to alleviate kidney injury and podocyte pyroptosis in diabetic nephropathy. Exp Cell Res 2021; 408: 112863
- 171 Shi JX, Wang QJ, Li H, Huang Q. SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis. Exp Ther Med 2017; 13: 342-348
- 172 Li W, Yang Y, Li Y, Zhao Y, Jiang H. Sirt5 attenuates cisplatin-induced acute kidney injury through regulation of Nrf2/HO-1 and Bcl-2. Biomed Res Int 2019; 2019: 4745132
- 173 Zhang X, Zhao L, Xiang S, Sun Y, Wang P, Chen JJ, Teo BS, Xie Z, Zhang Z, Xu J. Yishen Tongluo formula alleviates diabetic kidney disease through regulating Sirt6/TGF-β1/Smad2/3 pathway and promoting degradation of TGF-β1. J Ethnopharmacol 2023; 307: 116243
- 174 Li W, Feng W, Su X, Luo D, Li Z, Zhou Y, Zhu Y, Zhang M, Chen J, Liu B, Huang H. SIRT6 protects vascular smooth muscle cells from osteogenic transdifferentiation via Runx2 in chronic kidney disease. J Clin Invest 2022; 132: e150051
- 175 Liu L, Wu Y, Wang P, Shi M, Wang J, Ma H, Sun D. PSC-MSC-derived exosomes protect against kidney fibrosis in vivo and in vitro through the SIRT6/β-catenin signaling pathway. Int J Stem Cells 2021; 14: 310-319
- 176 Fan Y, Cheng J, Yang Q, Feng J, Hu J, Ren Z, Yang H, Yang D, Ding G. Sirt6-mediated Nrf2/HO-1 activation alleviates angiotensin II-induced DNA DSBs and apoptosis in podocytes. Food Funct 2021; 12: 7867-7882
- 177 Li XT, Song JW, Zhang ZZ, Zhang MW, Liang LR, Miao R, Liu Y, Chen YH, Liu XY, Zhong JC. Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling. Free Radic Biol Med 2022; 193: 459-473
- 178 Chen G, Xue H, Zhang X, Ding D, Zhang S. p 53 inhibition attenuates cisplatin-induced acute kidney injury through microRNA-142–5 p regulating SIRT7/NF-κB. Ren Fail 2022; 44: 368-380
- 179 Palanisamy N, Viswanathan P, Anuradha CV. Effect of genistein, a soy isoflavone, on whole body insulin sensitivity and renal damage induced by a high-fructose diet. Ren Fail 2008; 30: 645-654
- 180 Kim MJ, Lim Y. Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage. Mediators Inflamm 2013; 2013: 510212
- 181 De Leo E, Taranta A, Raso R, Polishchuk E, DʼOria V, Pezzullo M, Goffredo BM, Cairoli S, Bellomo F, Battafarano G, Camassei FD, Del Fattore A, Polishchuk R, Emma F, Rega LR. Genistein improves renal disease in a mouse model of nephropathic cystinosis: A comparison study with cysteamine. Hum Mol Genet 2023; 32: 1090-1101
- 182 Özyurt H, Çevik Ö, Özgen Z, Özden AS, Çadırcı S, Elmas MA, Ercan F, Gören MZ, Şener G. Quercetin protects radiation-induced DNA damage and apoptosis in kidney and bladder tissues of rats. Free Radic Res 2014; 48: 1247-1255
- 183 Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 2019; 47: 446-456
- 184 Soufi FG, Vardyani M, Sheervalilou R, Mohammadi M, Somi MH. Long-term treatment with resveratrol attenuates oxidative stress, pro-inflammatory mediators and apoptosis in streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys 2012; 4: 431-438
- 185 Jiang B, Guo L, Li BY, Zhen JH, Song J, Peng T, Yang XD, Hu Z, Gao HQ. Resveratrol attenuates early diabetic nephropathy by down-regulating glutathione s-transferases Mu in diabetic rats. J Med Food 2013; 16: 481-486
- 186 Zhang W, Liu Y, Ge M, Jing J, Chen Y, Jiang H, Yu H, Li N, Zhang Z. Protective effect of resveratrol on arsenic trioxide-induced nephrotoxicity in rats. Nutr Res Pract 2014; 8: 220-226
- 187 Bai Y, Lu H, Wu C, Liang Y, Wang S, Lin C, Chen B, Xia P. Resveratrol inhibits epithelial-mesenchymal transition and renal fibrosis by antagonizing the hedgehog signaling pathway. Biochem Pharmacol 2014; 92: 484-493
- 188 Brasnyó P, Molnár GA, Mohás M, Markó L, Laczy B, Cseh J, Mikolás E, Szijártó IA, Mérei A, Halmai R, Mészáros LG, Sümegi B, Wittmann I. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 2011; 106: 383-389
- 189 Kandemir FM, Kucukler S, Caglayan C, Gur C, Batil AA, Gülçin İ. Therapeutic effects of silymarin and naringin on methotrexate‐induced nephrotoxicity in rats: Biochemical evaluation of anti‐inflammatory, antiapoptotic, and antiautophagic properties. J Food Biochem 2017; 41: e12398
- 190 Wang Z, Wang S, Zhao J, Yu C, Hu Y, Tu Y, Yang Z, Zheng J, Wang Y, Gao Y. Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of renin-angiotensin system components in rats. Int J Med Sci 2019; 16: 644-653
- 191 Liu ZM, Ho SC, Chen YM, Tang N, Woo J. Effect of whole soy and purified isoflavone daidzein on renal function–A 6-month randomized controlled trial in equol-producing postmenopausal women with prehypertension. Clin Biochem 2014; 47: 1250-1256
- 192 Askaripour M, Najafipour H, Saberi S, Jafari E, Rajabi S. Daidzein mitigates oxidative stress and inflammation in the injured kidney of ovariectomized rats: AT1 and Mas receptor functions. Iran J Kidney Dis 2022; 1: 32
- 193 Ueda M, Horiguchi Y, Sugimoto M, Ikeda S, Kume S. Effects of coumestrol administration to maternal mice during pregnancy and lactation on renal Ca metabolism in neonatal mice. Anim Sci J 2012; 83: 469-473
- 194 Samy JVRA, Natesan V. In silico molecular docking and ADMET properties of prunetin compounds for diabetic nephropathy effect. Research Square 2022.
- 195 Köksal Karayildirim Ç, Nalbantsoy A, Karabay Yavaşoğlu NÜ. Prunetin inhibits nitric oxide activity and induces apoptosis in urinary bladder cancer cells via CASP3 and TNF-α genes. Mol Biol Rep 2021; 48: 7251-7259
- 196 Zhuang K, Jiang X, Liu R, Ye C, Wang Y, Wang Y, Quan S, Huang H. Formononetin activates the Nrf2/ARE signaling pathway via Sirt1 to improve diabetic renal fibrosis. Front Pharmacol 2021; 11: 616378
- 197 Lv J, Zhuang K, Jiang X, Huang H, Quan S. Renoprotective effect of formononetin by suppressing Smad3 expression in Db/Db mice. Diabetes Metab Syndr Obes 2020; 13: 3313
- 198 Zhu B, Ni Y, Gong Y, Kang X, Guo H, Liu X, Li J, Wang L. Formononetin ameliorates ferroptosis-associated fibrosis in renal tubular epithelial cells and in mice with chronic kidney disease by suppressing the Smad3/ATF3/SLC7A11 signaling. Life Sci 2023; 315: 121331
- 199 Hao Y, Miao J, Liu W, Peng L, Chen Y, Zhong Q. Formononetin protects against cisplatin-induced acute kidney injury through activation of the PPARα/Nrf2/HO 1/NQO1 pathway. Int J Mol Med 2021; 47: 511-522
- 200 Huang D, Wang C, Duan Y, Meng Q, Liu Z, Huo X, Sun H, Ma X, Liu K. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury. Toxicol Appl Pharmacol 2017; 326: 15-24
- 201 Huang D, Wang C, Meng Q, Liu Z, Huo X, Sun H, Yang S, Ma X, Pengab J, Liu K. Protective effects of formononetin against rhabdomyolysis-induced acute kidney injury by upregulating Nrf2 in vivo and in vitro . RSC Adv 2016; 6: 110874-110883
- 202 Shalayel MH, Abukhalil MH, Al-Swailmi FK, Aladaileh SH. Renoprotective effect of formononetin against cyclophosphamide-induced oxidative stress and inflammation in rat kidney. J Pharm Res Int 2021; 33: 26-37
- 203 Althunibat OY, Abukhalil MH, Aladaileh SH, Qaralleh H, Al-Amarat W, Alfwuaires MA, Algefare AI, Namazi NI, Melebary SJ, Babalghith AO, Conte-Junior CA. Formononetin ameliorates renal dysfunction, oxidative stress, inflammation, and apoptosis and upregulates Nrf2/HO-1 signaling in a rat model of gentamicin-induced nephrotoxicity. Front Pharmacol 2022; 13: 916732