Rofo
DOI: 10.1055/a-2480-4885
Technical Innovations

Multiparametric functional MRI of the kidneys – evaluation of test-retest repeatability and effects of different manual and automatic image analysis strategies

Multiparametrische funktionelle MRT der Nieren – Evaluation der Wiederholbarkeit und des Effektes verschiedener manueller und automatischer Bildanalysestrategien
1   Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (Ringgold ID: RIN27203)
,
Isabelle Loster
2   Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany (Ringgold ID: RIN54188)
,
Stephan Ursprung
1   Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (Ringgold ID: RIN27203)
,
Aya Ghoul
3   Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (Ringgold ID: RIN27203)
,
3   Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (Ringgold ID: RIN27203)
,
Brigitte Gückel
1   Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (Ringgold ID: RIN27203)
,
Bernd Kühn
4   Siemens Healthcare AG, Erlangen, Germany (Ringgold ID: RIN42406)
,
Fritz Schick
5   Section on Experimental Radiology, Departement of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (Ringgold ID: RIN27203)
,
Petros Martirosian
5   Section on Experimental Radiology, Departement of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (Ringgold ID: RIN27203)
,
Ferdinand Seith
1   Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (Ringgold ID: RIN27203)
› Author Affiliations
Supported by: Wilhelm Sander-Stiftung 2020.143.1

Clinical Trial: Registration number (trial ID): DRKS00018966, Trial registry: German Clinical Trials Register (https://drks-neu.uniklinik-freiburg.de/), Type of Study: Prospektive single-center study

Abstract

Objective

Multiparametric MRI is a promising technique for noninvasive structural and functional imaging of the kidneys that is gaining increasing importance in clinical research. Still, there are no standardized recommendations for analyzing the acquired images and there is a need to further evaluate the accuracy and repeatability of currently recommended MRI parameters. The aim of the study was to evaluate the test-retest repeatability of functional renal MRI parameters using different image analysis strategies.

Methods

Ten healthy volunteers were examined twice with a multiparametric renal MRI protocol including arterial spin labeling (ASL), diffusion-weighted imaging (DWI) with intravoxel incoherent motion (IVIM), blood-oxygen-dependent (BOLD) imaging, T1 and T2 mapping, and volumetry with an interval of one week. The quantitative results of both kidneys were determined by manual organ segmentation, ROI analysis, and automatic segmentation based on the nnUNet framework. Test-retest repeatability of each parameter was computed using the within-subject coefficient of variance (wCV) and the intraclass coefficient (ICC). Segmentation accuracy and inter-reader agreement were evaluated using the dice score.

Results

Structural tissue parameters (T1, T2) showed wCV (%) between 4 and 11 and an ICC between 0.2 and 0.8. Functional parameters (ASL, BOLD and DWI) showed wCV (%) between 3 and 38 and an ICC between 0.0 and 0.7. The highest variances between test-retest scans were observed in perfusion measurements with ASL and IVIM (wCV: 17–37%). Quantitative analysis of the cortex and medulla showed a better repeatability when acquired using manual segmentation compared to ROI-based image analysis. Comparable repeatability was achieved with manual and automatic segmentation of the total kidney.

Conclusion

Reasonable repeatability was achieved for all MR parameters. Structural MR parameters showed better repeatability compared to functional parameters. ROI-based image analysis showed overall lower repeatability compared to manual segmentation. Comparable repeatability to manual segmentation as well as acceptable segmentation accuracy could be achieved with automatic segmentation.

Key Points

  • Reasonable test-retest repeatability can be achieved with multiparametric MRI of the kidneys.

  • Image analysis based on manual segmentation of the cortex and medulla showed overall better repeatability compared to ROI-based analysis.

  • Automatic segmentation of kidney volume showed similar repeatability of quantitative image analysis compared to manual segmentation.

Citation Format

  • Liang C, Loster I, Ursprung S et al. Multiparametric functional MRI of the kidneys - evaluation of test-retest repeatability and effects of different manual and automatic image analysis strategies. Fortschr Röntgenstr 2024; DOI 10.1055/a-2480-4885

Zusammenfassung

Einleitung

Die multiparametrische MRT ist eine vielversprechende Technik zur nicht-invasiven strukturellen und funktionellen Bildgebung der Nieren, welche an zunehmender Bedeutung in der klinischen Forschung gewinnt. Allerdings gibt es noch keine standardisierten Empfehlungen zur Auswertung der erhobenen Bilddaten und auch die derzeit empfohlenen MR-Parameter müssen weiter hinsichtlich ihrer Genauigkeit und Wiederholbarkeit untersucht werden. Ziel dieser Studie war die Evaluation der Test-Retest-Wiederholbarkeit der funktionellen MR-Parameter an der Niere unter Verwendung verschiedener Strategien zur Bildanalyse.

Material und Methoden

10 gesunde Probanden wurden zweimal mit Abstand einer Woche mittels eines multiparametrischen MR-Protokolls der Nieren untersucht, welches folgende Parameter umfasste: arterial spin labeling (ASL), diffusion-weighted imaging (DWI) with intravoxel incoherent motion (IVIM), blood-oxygen-dependent (BOLD) imaging, T1 und T2 mapping und die Volumetrie. Die quantitativen Ergebnisse beider Nieren wurden mittels manueller Segmentierung, ROI-Analyse und automatischer Segmentierung basierend auf dem nnUNet framework erhoben. Die Test-Retest Wiederholbarkeit der einzelnen Parameter wurde mittels within-subject Variationskoeffizienten (wCV) und des Intraklassen-Korrelationskoeffizienten (ICC) ermittelt. Die Segmentierungsgenauigkeit sowie die Übereinstimmung zwischen den Bewertern wurde mittels Dice score evaluiert.

Ergebnisse

Strukturelle Gewebeparameter (T1, T2), zeigten eine wCV zwischen 4 und 11% sowie einen ICC zwischen 0,2 und 0,8. Funktionelle Parameter (ASL, BOLD und DWI) wiesen einen wCV zwischen 3 und 38 auf sowie einen ICC zwischen 0,0 und 0,7. Die höchste Varianz zwischen den Test-Retest-Scans konnte bei den Perfusionsmessungen (ASL und IVIM) beobachtet werden mit einem wCV zwischen 17 bis 37%. Die quantitative Analyse des Nierenkortex sowie der Medulla zeigte insgesamt eine bessere Wiederholbarkeit unter Verwendung der manuellen Segmentierung im Vergleich zur ROI-Analyse. Eine vergleichbare Wiederholbarkeit zur manuellen Segmentierung konnte mit der automatischen Segmentierung erzielt werden.

Schlussfolgerung

Insgesamt zeigten alle angewandten MR-Parameter eine akzeptable Test-Retest-Wiederholbarkeit. Strukturelle MR-Parameter zeigten eine bessere Wiederholbarkeit im Vergleich zu funktionellen Parametern. Mittels ROI-Analyse erhobene Daten wiesen eine geringere Wiederholbarkeit im Vergleich zu mittels manueller Segmentierung erhobenen Daten auf. Eine mit der manuellen Segmentierung vergleichbare Wiederholbarkeit sowie eine akzeptable Segmentierungsgenauigkeit konnte mittels automatischer Segmentierung erzielt werden.

Kernaussagen

  • Eine angemessene Test-Retest-Wiederholbarkeit kann mittels multiparametrischer MRT der Nieren erreicht werden.

  • Die manuelle Segmentierung des Kortex und der Medulla zeigte insgesamt eine bessere Wiederholbarkeit im Vergleich zur der ROI-Analyse.

  • Die automatische Segmentierung des Nierenvolumens zeigte eine mit der manuellen Segmentierung vergleichbare Wiederholbarkeit bzgl. der quantitativen Bildanalyse.



Publication History

Received: 17 August 2024

Accepted after revision: 10 November 2024

Article published online:
10 January 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Odudu A, Nery F, Harteveld AA. et al. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33: ii15-ii21
  • 2 Caroli A, Schneider M, Friedli I. et al. Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33: ii29-ii40
  • 3 Pruijm M, Mendichovszky IA, Liss P. et al. Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol Dial Transplant 2018; 33: ii22-ii28
  • 4 Wolf M, de Boer A, Sharma K. et al. Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association – European Renal Association 2018; 33: ii41-ii50
  • 5 Zhang J, Zhang LJ. Functional MRI as a Tool for Evaluating Interstitial Fibrosis and Prognosis in Kidney Disease. Kidney Diseases 2020; 6: 7-12
  • 6 Yu YM, Ni QQ, Wang ZJ. et al. Multiparametric functional magnetic resonance imaging for evaluating renal allograft injury. Korean journal of radiology 2019; 20: 894
  • 7 Wang F, Takahashi K, Li H. et al. Assessment of unilateral ureter obstruction with multi-parametric MRI. Magnetic Resonance in Medicine 2018; 79: 2216-2227
  • 8 Schutter R, Lantinga VA, Borra RJH. et al. MRI for diagnosis of post-renal transplant complications: current state-of-the-art and future perspectives. Magnetic Resonance Materials in Physics, Biology and Medicine 2020; 33: 49-61
  • 9 Schley G, Jordan J, Ellmann S. et al. Multiparametric magnetic resonance imaging of experimental chronic kidney disease: A quantitative correlation study with histology. PloS one 2018; 13: e0200259
  • 10 Pruijm M. Can COMBINED Magnetic Resonance Imaging Measure the Progression of Kidney Disease?. Clinical journal of the American Society of Nephrology : CJASN 2020; 15: 747-749
  • 11 Mao W, Ding X, Ding Y. et al. Evaluation of interstitial fibrosis in chronic kidney disease by multiparametric functional MRI and histopathologic analysis. European radiology 2023; 33: 4138-4147
  • 12 MacAskill CJ, Erokwu BO, Markley M. et al. Multi-parametric MRI of kidney disease progression for autosomal recessive polycystic kidney disease: mouse model and initial patient results. Pediatric research 2021; 89: 157-162
  • 13 Li X-M, Yang L, Reng J. et al. Non-invasive evaluation of renal structure and function of healthy individuals with multiparametric MRI: Effects of sex and age. Scientific Reports 2019; 9: 10661
  • 14 Lang ST, Guo J, Bruns A. et al. Multiparametric quantitative MRI for the detection of IgA nephropathy using tomoelastography, DWI, and BOLD imaging. Investigative radiology 2019; 54: 669-674
  • 15 Gillis K, Rankin A, Allwood-Spiers S. et al. P0289 MULTI-PARAMETRIC RENAL MAGNETIC RESONANCE IMAGING IN EARLY KIDNEY TRANSPLANTATION. Nephrol Dial Transplant 2020; 35: gfaa142.P0289
  • 16 Eckerbom P, Hansell P, Cox E. et al. Multiparametric assessment of renal physiology in healthy volunteers using noninvasive magnetic resonance imaging. American Journal of Physiology-Renal Physiology 2019; 316: F693-F702
  • 17 Cox EF, Buchanan CE, Bradley CR. et al. Multiparametric Renal Magnetic Resonance Imaging: Validation, Interventions, and Alterations in Chronic Kidney Disease. Frontiers in physiology 2017; 8: 696
  • 18 Buchanan CE, Mahmoud H, Cox EF. et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association – European Renal Association 2020; 35: 955-964
  • 19 Boer A de, Harteveld AA, Stemkens B. et al. Multiparametric Renal MRI: An Intrasubject Test–Retest Repeatability Study. Journal of magnetic resonance imaging 2021; 53: 859-873
  • 20 Adams LC, Bressem KK, Scheibl S. et al. Multiparametric Assessment of Changes in Renal Tissue after Kidney Transplantation with Quantitative MR Relaxometry and Diffusion-Tensor Imaging at 3 T. Journal of clinical medicine 2020; 9: 1551
  • 21 Caroli A, Pruijm M, Burnier M. et al. Functional magnetic resonance imaging of the kidneys: where do we stand? The perspective of the European COST Action PARENCHIMA. Nephrol Dial Transplant 2018; 33: ii1-ii3
  • 22 Mendichovszky I, Pullens P, Dekkers I. et al. Technical recommendations for clinical translation of renal MRI: a consensus project of the Cooperation in Science and Technology Action PARENCHIMA. Magn Reson Mater Phy 2020; 33: 131-140
  • 23 Home | Parenchima. 2021 https://renalmri.org/
  • 24 Bane O, Mendichovszky IA, Milani B. et al. Consensus-based technical recommendations for clinical translation of renal BOLD MRI. Magn Reson Mater Phy 2020; 33: 199-215
  • 25 Nery F, Buchanan CE, Harteveld AA. et al. Consensus-based technical recommendations for clinical translation of renal ASL MRI. Magn Reson Mater Phy 2020; 33: 141-161
  • 26 Ljimani A, Caroli A, Laustsen C. et al. Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. Magn Reson Mater Phy 2020; 33: 177-195
  • 27 Dekkers IA, Boer A de, Sharma K. et al. Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI. Magn Reson Mater Phy 2020; 33: 163-176
  • 28 Zollner FG, Kocinski M, Hansen L. et al. Kidney Segmentation in Renal Magnetic Resonance Imaging – Current Status and Prospects. IEEE Access 2021; 9: 71577-71605
  • 29 Günther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magnetic Resonance in Medicine 2005; 54: 491-498
  • 30 Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 2003; 20: 870-888
  • 31 Buxton RB, Frank LR, Wong EC. et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magnetic Resonance in Medicine 1998; 40: 383-396
  • 32 Robson PM, Madhuranthakam AJ, Smith MP. et al. Volumetric Arterial Spin-labeled Perfusion Imaging of the Kidneys with a Three-dimensional Fast Spin Echo Acquisition. Academic radiology 2016; 23: 144-154
  • 33 Smith SM, Jenkinson M, Woolrich MW. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23: S208-19
  • 34 Andersson JLR, Graham MS, Drobnjak I. et al. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement. Neuroimage 2017; 152: 450-466
  • 35 Le Bihan D, Breton E, Lallemand D. et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505
  • 36 Pekar J, Moonen CT, van Zijl PC. On the precision of diffusion/perfusion imaging by gradient sensitization. Magnetic Resonance in Medicine 1992; 23: 122-129
  • 37 Gilliam C, Kustner T, Blu T. 3D motion flow estimation using local all-pass filters. 2016 IEEE International Symposium on Biomedical Imaging: From Nano to Macro:Wednesday, 13 April-Saturday, 16 April 2016, Clarion Congress Hotel in Prague, Czech Republic. In: . Piscataway, NJ: IEEE; 2016: 282-285
  • 38 Kellner E. Nora – The Medical Imaging Platform. 2022 https://www.nora-imaging.com/#team
  • 39 Isensee F, Jaeger PF, Kohl SAA. et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods 2021; 18: 203-211
  • 40 Chen LC, Papandreou G, Kokkinos I. et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell 2018; 40: 834-848
  • 41 Boer A de, Harteveld AA, Stemkens B. et al. Multiparametric Renal MRI: An Intrasubject Test-Retest Repeatability Study. Journal of magnetic resonance imaging : JMRI 2021; 53: 859-873
  • 42 Kline TL, Edwards ME, Garg I. et al. Quantitative MRI of kidneys in renal disease. Abdom Radiol 2018; 43: 629-638
  • 43 Li LP, Thacker J, Li W. et al. Consistency of Multiple Renal Functional MRI Measurements Over 18 Months. Journal of magnetic resonance imaging: JMRI 2018; 48: 514-521
  • 44 Rankin AJ, Allwood-Spiers S, Lee MMY. et al. Comparing the interobserver reproducibility of different regions of interest on multi-parametric renal magnetic resonance imaging in healthy volunteers, patients with heart failure and renal transplant recipients. Magnetic Resonance Materials in Physics, Biology and Medicine 2020; 33: 103-112
  • 45 Caroli A, Schneider M, Friedli I. et al. Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33: ii29-ii40
  • 46 Blondin D, Lanzman RS, Mathys C. et al. Funktionelle MRT der Transplantatnieren: klinische Wertigkeit der Diffusionsbildgebung. Fortschr Röntgenstr 2009; 181: 1162-1167
  • 47 Ljimani A, Lanzman RS, Müller-Lutz A. et al. Non-gaussian diffusion evaluation of the human kidney by Padé exponent model. Journal of magnetic resonance imaging : JMRI 2018; 47: 160-167
  • 48 Schneider MJ, Dietrich O, Ingrisch M. et al. Intravoxel Incoherent Motion Magnetic Resonance Imaging in Partially Nephrectomized Kidneys. Investigative radiology 2016; 51: 323-330
  • 49 Notohamiprodjo M, Reiser MF, Sourbron SP. Diffusion and perfusion of the kidney. European journal of radiology 2010; 76: 337-347
  • 50 Zöllner FG, Šerifović-Trbalić A, Kabelitz G. et al. Image registration in dynamic renal MRI-current status and prospects. Magma (New York, N.Y. ) 2020; 33: 33-48
  • 51 Buchanan C, Mahmoud H, Cox E. et al. Multiparametric MRI assessment of renal structure and function in acute kidney injury and renal recovery. Clinical Kidney Journal 2020; 1: 8