Hamostaseologie 2025; 45(01): 080-088
DOI: 10.1055/a-2487-6365
Review Article

Antithrombotic Treatment for Left Ventricular Assist Devices: One Does Not Fit All

1   Department of Anaesthesiology, Cardiothoracic and Vascular Anaesthesia, Lausanne University Hospital (CHUV), Lausanne, Switzerland
2   Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
,
1   Department of Anaesthesiology, Cardiothoracic and Vascular Anaesthesia, Lausanne University Hospital (CHUV), Lausanne, Switzerland
› Author Affiliations

Abstract

As the prevalence of heart failure is increasing globally, left ventricular assist devices (LVADs) have become essential therapeutic options in managing advanced heart failure. This review explores the development of LVAD technology, with a focus on the shift from pulsatile to continuous-flow devices, particularly the HeartMate 3, the most advanced generation of LVADs. The evolution in design has significantly enhanced patient survival and quality of life. However, hemocompatibility-related adverse events (HRAEs)—such as pump thrombosis, ischemic and hemorrhagic strokes, and gastrointestinal bleeding—remain major clinical challenges. Striking the delicate balance between preventing thromboembolic events and minimizing hemorrhagic risks remains critical in LVAD patient management. Current therapeutic strategies typically involve long-term anticoagulation with vitamin K antagonists and antiplatelet therapy, though optimal management must be individualized based on patient-specific factors and device characteristics. Emerging alternatives, including low-dose anticoagulation, direct oral anticoagulants such as apixaban, and aspirin-free regimens, offer promising potential to reduce adverse outcomes. This review also highlights the role of innovative mechanical designs in minimizing shear stress and alternative treatments in preventing complications like gastrointestinal bleeding. Despite these advancements, personalized treatment strategies are critical, as no single therapeutic regimen fits all LVAD recipients. Ongoing research into both device technology and pharmacological therapies is essential to further reduce HRAEs and improve long-term outcomes for LVAD patients.



Publication History

Received: 16 October 2024

Accepted: 25 November 2024

Article published online:
19 February 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Khan MS, Shahid I, Bennis A, Rakisheva A, Metra M, Butler J. Global epidemiology of heart failure. Nat Rev Cardiol 2024; 21 (10) 717-734
  • 2 Seferović PM, Vardas P, Jankowska EA. et al; National Heart Failure Societies of the ESC member countries (see Appendix). The Heart Failure Association Atlas: Heart Failure Epidemiology and Management Statistics 2019. Eur J Heart Fail 2021; 23 (06) 906-914
  • 3 Jones NR, Ordóñez-Mena JM, Roalfe AK. et al. Body mass index and survival in people with heart failure. Heart 2023; 109 (20) 1542-1549
  • 4 Jones NR, Roalfe AK, Adoki I, Hobbs FDR, Taylor CJ. Survival of patients with chronic heart failure in the community: a systematic review and meta-analysis. Eur J Heart Fail 2019; 21 (11) 1306-1325
  • 5 Jorde UP, Saeed O, Koehl D. et al. The Society of Thoracic Surgeons Intermacs 2023 Annual Report: focus on magnetically levitated devices. Ann Thorac Surg 2024; 117 (01) 33-44
  • 6 Schmitto JD, Shaw S, Garbade J. et al. Fully magnetically centrifugal left ventricular assist device and long-term outcomes: the ELEVATE registry. Eur Heart J 2024; 45 (08) 613-625
  • 7 Jakus N, Brugts JJ, Claggett B. et al; PCHF-VAD Registry. Improved survival of left ventricular assist device carriers in Europe according to implantation eras: results from the PCHF-VAD registry. Eur J Heart Fail 2022; 24 (07) 1305-1315
  • 8 Mehra MR, Goldstein DJ, Cleveland JC. et al. Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial. JAMA 2022; 328 (12) 1233-1242
  • 9 Numan L, Schramm R, Oerlemans MIFJ. et al. Survival after HeartMate 3 left ventricular assist device implantation: real-world data from Europe. ESC Heart Fail 2023; 10 (04) 2754-2756
  • 10 Uriel N, Colombo PC, Cleveland JC. et al. Hemocompatibility-related outcomes in the MOMENTUM 3 trial at 6 months: a randomized controlled study of a fully magnetically levitated pump in advanced heart failure. Circulation 2017; 135 (21) 2003-2012
  • 11 Shah P, Tantry US, Bliden KP, Gurbel PA. Bleeding and thrombosis associated with ventricular assist device therapy. J Heart Lung Transplant 2017; 36 (11) 1164-1173
  • 12 Shah P, Looby M, Dimond M. et al. Evaluation of the hemocompatibility of the direct oral anticoagulant apixaban in left ventricular assist devices: the DOAC LVAD study. JACC Heart Fail 2024; 12 (09) 1540-1549
  • 13 Sen A, Larson JS, Kashani KB. et al. Mechanical circulatory assist devices: a primer for critical care and emergency physicians. Crit Care 2016; 20 (01) 153
  • 14 Helman DN, Rose EA. History of mechanical circulatory support. Prog Cardiovasc Dis 2000; 43 (01) 1-4
  • 15 Berardi C, Bravo CA, Li S. et al. The history of durable left ventricular assist devices and comparison of outcomes: HeartWare, HeartMate II, HeartMate 3, and the future of mechanical circulatory support. J Clin Med 2022; 11 (07) 2022
  • 16 Goldstein DJ, Oz MC, Rose EA. Implantable left ventricular assist devices. N Engl J Med 1998; 339 (21) 1522-1533
  • 17 Rose EA, Gelijns AC, Moskowitz AJ. et al; Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001; 345 (20) 1435-1443
  • 18 Pagani FD, Long JW, Dembitsky WP, Joyce LD, Miller LW. Improved mechanical reliability of the HeartMate XVE left ventricular assist system. Ann Thorac Surg 2006; 82 (04) 1413-1418
  • 19 Long JW, Kfoury AG, Slaughter MS. et al. Long-term destination therapy with the HeartMate XVE left ventricular assist device: improved outcomes since the REMATCH study. Congest Heart Fail 2005; 11 (03) 133-138
  • 20 Slaughter MS, Rogers JG, Milano CA. et al; HeartMate II Investigators. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 2009; 361 (23) 2241-2251
  • 21 Molina EJ, Shah P, Kiernan MS. et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann Thorac Surg 2021; 111 (03) 778-792
  • 22 John R, Kamdar F, Liao K. et al. Low thromboembolic risk for patients with the Heartmate II left ventricular assist device. J Thorac Cardiovasc Surg 2008; 136 (05) 1318-1323
  • 23 Rogers JG, Pagani FD, Tatooles AJ. et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med 2017; 376 (05) 451-460
  • 24 Kuehn BM. FDA: stop using Medtronic's Heartware ventricular assist device. JAMA 2021; 326 (03) 215
  • 25 Bourque K, Cotter C, Dague C. et al. Design rationale and preclinical evaluation of the HeartMate 3 left ventricular assist system for hemocompatibility. ASAIO J 2016; 62 (04) 375-383
  • 26 Mehra MR, Uriel N, Naka Y. et al; MOMENTUM 3 Investigators. A fully magnetically levitated left ventricular assist device - final report. N Engl J Med 2019; 380 (17) 1618-1627
  • 27 Khalil F, Asleh R, Perue RK. et al. Vascular function in continuous flow LVADs: implications for clinical practice. Biomedicines 2023; 11 (03) 757
  • 28 Poredos P, Jezovnik MK, Radovancevic R, Gregoric ID. Endothelial function in patients with continuous-flow left ventricular assist devices. Angiology 2021; 72 (01) 9-15
  • 29 Bartoli CR, Dassanayaka S, Brittian KR. et al. Insights into the mechanism(s) of von Willebrand factor degradation during mechanical circulatory support. J Thorac Cardiovasc Surg 2014; 147 (05) 1634-1643
  • 30 Jilma-Stohlawetz P, Quehenberger P, Schima H. et al. Acquired von Willebrand factor deficiency caused by LVAD is ADAMTS-13 and platelet dependent. Thromb Res 2016; 137: 196-201
  • 31 Ono M, Joshi B, Brady K. et al. Cerebral blood flow autoregulation is preserved after continuous-flow left ventricular assist device implantation. J Cardiothorac Vasc Anesth 2012; 26 (06) 1022-1028
  • 32 Cornwell III WK, Tarumi T, Aengevaeren VL. et al. Effect of pulsatile and nonpulsatile flow on cerebral perfusion in patients with left ventricular assist devices. J Heart Lung Transplant 2014; 33 (12) 1295-1303
  • 33 Rapido F. The potential adverse effects of haemolysis. Blood Transfus 2017; 15 (03) 218-221
  • 34 Saeed D, Feldman D, Banayosy AE. et al. The 2023 International Society for heart and lung transplantation guidelines for mechanical circulatory support: a 10-year update. J Heart Lung Transplant 2023; 42 (07) e1-e222
  • 35 Starling RC, Moazami N, Silvestry SC. et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med 2014; 370 (01) 33-40
  • 36 Maltais S, Kilic A, Nathan S. et al; PREVENT Study Investigators. PREVENtion of HeartMate II pump thrombosis through clinical management: the PREVENT multi-center study. J Heart Lung Transplant 2017; 36 (01) 1-12
  • 37 Chaudhry SP, DeVore AD, Vidula H. et al; Future Leaders In Growing Heart Failure Therapies (FLIGHT) Investigators. Left ventricular assist devices: a primer for the general cardiologist. J Am Heart Assoc 2022; 11 (24) e027251
  • 38 Hollis IB, Jennings DL, Krim S. et al. An ISHLT consensus statement on strategies to prevent and manage hemocompatibility related adverse events in patients with a durable, continuous-flow ventricular assist device. J Heart Lung Transplant 2024; 43 (08) 1199-1234
  • 39 Apostoli A, Bianchi V, Bono N. et al. Prothrombotic activity of cytokine-activated endothelial cells and shear-activated platelets in the setting of ventricular assist device support. J Heart Lung Transplant 2019; 38 (06) 658-667
  • 40 Consolo F, Esposti F, Gustar A, De Bonis M, Pappalardo F. Log files analysis and evaluation of circadian patterns for the early diagnosis of pump thrombosis with a centrifugal continuous-flow left ventricular assist device. J Heart Lung Transplant 2019; 38 (10) 1077-1086
  • 41 Schalit I, Espinoza A, Pettersen FJ. et al. Improved detection of thromboembolic complications in left ventricular assist device by novel accelerometer-based analysis. ASAIO J 2022; 68 (09) 1117-1125
  • 42 Kang J, Hennessy-Strahs S, Kwiatkowski P. et al. Continuous-flow LVAD support causes a distinct form of intestinal angiodysplasia. Circ Res 2017; 121 (08) 963-969
  • 43 Del Rio-Pertuz G, Nair N. Gastrointestinal bleeding in patients with continuous-flow left ventricular assist devices: a comprehensive review. Artif Organs 2023; 47 (01) 12-23
  • 44 Tabit CE, Coplan MJ, Chen P, Jeevanandam V, Uriel N, Liao JK. Tumor necrosis factor-α levels and non-surgical bleeding in continuous-flow left ventricular assist devices. J Heart Lung Transplant 2018; 37 (01) 107-115
  • 45 Meyer AL, Malehsa D, Budde U, Bara C, Haverich A, Strueber M. Acquired von Willebrand syndrome in patients with a centrifugal or axial continuous flow left ventricular assist device. JACC Heart Fail 2014; 2 (02) 141-145
  • 46 Yang M, Houck KL, Dong X. et al. Hyperadhesive von Willebrand factor promotes extracellular vesicle-induced angiogenesis: implication for LVAD-induced bleeding. JACC Basic Transl Sci 2022; 7 (03) 247-261
  • 47 Uriel N, Pak SW, Jorde UP. et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol 2010; 56 (15) 1207-1213
  • 48 Lombardi M, Bonora M, Baldetti L. et al. Left ventricular assist devices promote changes in the expression levels of platelet microRNAs. Front Cardiovasc Med 2023; 10: 1178556
  • 49 Bartoli CR, Kang J, Zhang D. et al. Left ventricular assist device design reduces von Willebrand factor degradation: a comparative study between the HeartMate II and the EVAHEART left ventricular assist system. Ann Thorac Surg 2017; 103 (04) 1239-1244
  • 50 Saito S, Yamazaki K, Nishinaka T. et al; J-MACS Research Group. Post-approval study of a highly pulsed, low-shear-rate, continuous-flow, left ventricular assist device, EVAHEART: a Japanese multicenter study using J-MACS. J Heart Lung Transplant 2014; 33 (06) 599-608
  • 51 Allen SR, Slaughter MS, Ahmed MM. et al. COMPETENCE Trial: the EVAHEART 2 continuous flow left ventricular assist device. J Heart Lung Transplant 2023; 42 (01) 33-39
  • 52 Abbasi MA, Stoller DA, Lyden E, Lowes BD, Zolty R, Lundgren SW. Impact of digoxin utilization on clinical outcomes following left ventricular assist device implantation. Int J Artif Organs 2022; 45 (11) 919-926
  • 53 Vukelic S, Vlismas PP, Patel SR. et al. Digoxin is associated with a decreased incidence of angiodysplasia-related gastrointestinal bleeding in patients with continuous-flow left ventricular assist devices. Circ Heart Fail 2018; 11 (08) e004899
  • 54 El Rafei A, Trachtenberg BH, Schultz J. et al. Association between digoxin use and gastrointestinal bleeding in contemporary continuous flow left ventricular assist device support. J Heart Lung Transplant 2021; 40 (07) 671-676
  • 55 Ahmed MM, Meece LE, Handberg EM. et al. Intravenous administration of umbilical cord lining stem cells in left ventricular assist device recipients: results of the uSTOP LVAD BLEED pilot study. JHLT Open 2024;
  • 56 Ahmed MM, Meece LE, Handberg EM, Pepine CJ. Intravenous administration of umbilical cord lining stem cells in left ventricular assist device recipient: Rationale and design of the uSTOP LVAD BLEED pilot study. Am Heart J Plus 2022; 16: 100142
  • 57 Santoro RC, Molinari AC, Leotta M, Martini T. Isolated prolongation of activated partial thromboplastin time: not just bleeding risk!. Medicina (Kaunas) 2023; 59 (06) 1169
  • 58 Pokorney SD, Simon DN, Thomas L. et al; Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) Investigators. Patients' time in therapeutic range on warfarin among US patients with atrial fibrillation: results from ORBIT-AF registry. Am Heart J 2015; 170 (01) 141-148 , 148.e1
  • 59 Martinez BK, Yik B, Tran R. et al. Meta-analysis of time in therapeutic range in continuous-flow left ventricular assist device patients receiving warfarin. Artif Organs 2018; 42 (07) 700-704
  • 60 Macaluso GP, Pagani FD, Slaughter MS. et al. Time in therapeutic range significantly impacts survival and adverse events in destination therapy patients. ASAIO J 2022; 68 (01) 14-20
  • 61 Netuka I, Ivák P, Tučanová Z. et al. Evaluation of low-intensity anti-coagulation with a fully magnetically levitated centrifugal-flow circulatory pump-the MAGENTUM 1 study. J Heart Lung Transplant 2018; 37 (05) 579-586
  • 62 Dubois V, Dincq AS, Douxfils J. et al. Perioperative management of patients on direct oral anticoagulants. Thromb J 2017; 15: 14
  • 63 Andreas M, Moayedifar R, Wieselthaler G. et al. Increased thromboembolic events with dabigatran compared with vitamin K antagonism in left ventricular assist device patients: a randomized controlled pilot trial. Circ Heart Fail 2017; 10 (05) e003709
  • 64 Eikelboom JW, Connolly SJ, Brueckmann M. et al; RE-ALIGN Investigators. Dabigatran versus warfarin in patients with mechanical heart valves. N Engl J Med 2013; 369 (13) 1206-1214
  • 65 Granger CB, Alexander JH, McMurray JJ. et al; ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011; 365 (11) 981-992
  • 66 Lip GYH, Keshishian AV, Zhang Y. et al. Oral anticoagulants for nonvalvular atrial fibrillation in patients with high risk of gastrointestinal bleeding. JAMA Netw Open 2021; 4 (08) e2120064
  • 67 Rao SD, Connor DE, Shehab S. et al. Ex vivo assessment of different oral anticoagulant regimens on pump thrombosis in a HeartWare ventricular assist device. Circ Heart Fail 2021; 14 (07) e007231
  • 68 Aimo A, Giugliano RP, De Caterina R. Non-vitamin K antagonist oral anticoagulants for mechanical heart valves: Is the door still open?. Circulation 2018; 138 (13) 1356-1365
  • 69 Netuka I, Tucanova Z, Ivak P. et al. A prospective randomized trial of direct oral anticoagulant therapy with a fully magnetically levitated LVAD: the DOT-HM3 study. Circulation 2024; 150 (06) 509-511
  • 70 Schnegg B, Deveza R, Hayward C. Apixaban in bridge to transplant and destination LVAD - rationale and study design: the ApixiVAD trial. ESC Heart Fail 2024; 11 (04) 2387-2394
  • 71 Mehra MR, Netuka I, Uriel N. et al; ARIES-HM3 Investigators. Aspirin and hemocompatibility events with a left ventricular assist device in advanced heart failure: the ARIES-HM3 randomized clinical trial. JAMA 2023; 330 (22) 2171-2181
  • 72 Floroff CK, Rieger KL, Veasey TM. et al. Assessment of bleeding and thrombosis based on aspirin responsiveness after continuous-flow left ventricular assist device placement. ASAIO J 2017; 63 (05) 578-587
  • 73 Saeed O, Colombo PC, Mehra MR. et al. Effect of aspirin dose on hemocompatibility-related outcomes with a magnetically levitated left ventricular assist device: an analysis from the MOMENTUM 3 study. J Heart Lung Transplant 2020; 39 (06) 518-525
  • 74 Cikes M, Yuzefpolskaya M, Gustafsson F, Mehra MR. Antithrombotic strategies with left ventricular assist devices. J Card Fail 2024; 30 (11) 1489-1495
  • 75 Consolo F, Pozzi L, Pieri M. et al. Influence of different antithrombotic regimens on platelet-mediated thrombin generation in patients with left ventricular assist devices. ASAIO J 2020; 66 (04) 415-422
  • 76 Consolo F, Marasi A, Della Valle P. et al. Bleeding in patients with continuous-flow left ventricular assist devices: acquired von Willebrand disease or antithrombotics?. Eur J Cardiothorac Surg 2022; 62 (01) ezab474
  • 77 Consolo F, Raimondi Lucchetti M, Tramontin C, Lapenna E, Pappalardo F. Do we need aspirin in HeartMate 3 patients?. Eur J Heart Fail 2019; 21 (06) 815-817
  • 78 Lim HS, Ranasinghe A, Mascaro J, Howell N. Discontinuation of aspirin in Heartmate 3 left ventricular assist device. ASAIO J 2019; 65 (06) 631-633
  • 79 Shah P, Sayer G, Sinha SS. et al. Dynamic risk estimation of adverse events in ambulatory LVAD patients: a MOMENTUM 3 analysis. JACC Heart Fail 2024; 12 (11) 1898-1912
  • 80 Consolo F, Pappalardo F. New antithrombotic strategies to improve outcomes with the HeartMate 3. ASAIO J 2023; 69 (01) e3-e6