Subscribe to RSS
DOI: 10.1055/a-2492-4375
N-(Trimethylsilyl)diethylamine-Promoted Intramolecular SNAr Reaction of Electron-Rich Aryl Fluorides
This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. 20K15468).

Abstract
N-(Trimethylsilyl)diethylamine (TMSNEt2) significantly promotes intramolecular nucleophilic aromatic substitution (SNAr) reactions of electron-rich aryl fluorides with t-BuOK and crown ether. Although substrates bearing electron-donating groups are conventionally inert under SNAr conditions, the activation of substrates by TMSNEt2 enables the reactions to proceed even at room temperature. This method is applicable to the preparation of benzo-fused oxygen-containing heterocycles, such as 3,4-dihydro-2H-1,4-benzoxazines, 3,4-dihydro-2H-1,5-benzoxazepines, and 3,4-dihydro-2H-1-benzopyran, in good to excellent yields (56–93%).
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2492-4375.
- Supporting Information
Publication History
Received: 26 October 2024
Accepted after revision: 28 November 2024
Accepted Manuscript online:
28 November 2024
Article published online:
22 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Njardarson Web site (accessed October 2024): https://njardarson.lab.arizona.edu
- 1b Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
- 2 Li Y, Liu T, Sun J. Molecules 2023; 28: 733
- 3 Mukhopadhyay A, Moorthy JN. J. Photochem. Photobiol., C 2016; 29: 73
- 4 Chen J, Cao Y. Acc. Chem. Res. 2009; 42: 1709
- 5a Barnes EC, Bezerra-Gomes P, Nett M, Hertweck C. J. Antibiot. 2015; 68: 463
- 5b Xue H, Guo Y, Wang Z. WO2021083135 2021
- 5c Rescourio G, Gonzalez AZ, Jabri S, Belmontes B, Moody G, Whittington D, Huang X, Caenepeel S, Cardozo M, Cheng AC, Chow D, Dou H, Jones A, Kelly RC, Li Y, Lizarzaburu M, Lo M.-C, Mallari R, Meleza C, Rew Y, Simonovich S, Sun D, Turcotte S, Yan X, Wong SG, Yanez E, Zancanella M, Houze J, Medina JC, Hughes PE, Brown SP. J. Med. Chem. 2019; 62: 10258
- 5d Surana KR, Mahajan SK. Trends Sci. 2022; 19: 3305
- 6a Asif M, Imran M. Int. J. New Chem. 2020; 7: 60
- 6b Wang Y, Brewer JT, Akritopoulou-Zanze I, Djuric SW, Pohlki F, Braje W, Relo A.-L. WO2010124042, 2010
- 6c Kamboj S, Singh R. Arabian J. Sci. Eng. 2022; 47: 75
- 7a Torisu K, Kobayashi K, Iwahashi M, Nakai Y, Onoda T, Nagase T, Sugimoto I, Okada Y, Matsumoto R, Nanbu F, Ohuchida S, Nakai H, Toda M. Bioorg. Med. Chem. 2004; 12: 5361
- 7b Currie KS, Patel L, Sedillo KF. Bioorg. Med. Chem. Lett. 2019; 29: 2034
- 7c Thapa D, Cairns EA, Szczesniak A.-M, Toguri JT, Caldwell MD, Kelly ME. M. Cannabis Cannabinoid Res. 2018; 3: 11
- 8a Reddy GJ, Rao KS. Heterocycl. Commun. 2013; 19: 387
- 8b Caliendo G, Perissutti E, Santagada V, Fiorino F, Severino B, Cirillo D, d'Emmanuele di Villa Bianca R, Lippolis L, Pinto A, Sorrentino R. Eur. J. Med. Chem. 2004; 39: 815
- 9 Masuoka Y, Asako T, Goto G, Noguchi S. Chem. Pharm. Bull. 1986; 34: 130
- 10 Srikanth G, Ramakrishna KV. S, Sharma GV. M. Org. Lett. 2015; 17: 4576
- 11a Kuwabe S, Torraca KE, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 12202
- 11b Liu Z, Chen Y. Tetrahedron Lett. 2009; 50: 3790
- 11c Shen H.-C, Wu Y.-F, Zhang Y, Fan L.-F, Han Z.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2018; 57: 2372
- 11d Liu Z.-T, Wang Y.-H, Zhu F.-L, Hu X.-P. Org. Lett. 2016; 18: 1190
- 12 Terrier F. Modern Nucleophilic Aromatic Substitution. Wiley-VCH; Weinheim: 2013
- 13a Higuchi RI, Arienti KL, López FJ, Mani NS, Mais DE, Caferro TR, Long YO, Jones TK, Edwards JP, Zhi L, Schrader WT, Negro-Vilar A, Marschke KB. J. Med. Chem. 2007; 50: 2486
- 13b Dinakaran M, Senthilkumar P, Yogeeswari P, China A, Nagaraja V, Sriram D. Bioorg. Med. Chem. Lett. 2008; 18: 1229
- 14 Pistritto VA, Schutzbach-Horton ME, Nicewicz DA. J. Am. Chem. Soc. 2020; 142: 17187
- 15 Huang H, Lambert TH. Angew. Chem. Int. Ed. 2020; 59: 658
- 16 Matsuoka S, Nakamura K, Ohmori K, Suzuki K. Synthesis 2019; 51: 1139
- 17a Desai P, Schildknegt K, Agrios KA, Mossman C, Milligan GL, Aubé J. J. Am. Chem. Soc. 2000; 122: 7226
- 17b Abaee MS, Mojtahedi MM, Saberi F, Karimi G, Rezaei MT, Mesbah AW, Harms K, Massa W. Synlett 2012; 23: 2073
- 17c Ran G, Weisheng T. Steroids 2022; 186: 109072
- 18a Couture K, Gouverneur V, Mioskowski C. Bioorg. Med. Chem. Lett. 1999; 9: 3023
- 18b Ohshita J, Iwata A, Kanetani F, Kunai A, Yamamoto Y, Matui C. J. Org. Chem. 1999; 64: 8024
- 18c Hubbell AK, Coates GW. J. Org. Chem. 2020; 85: 13391
- 19 Ferraris D, Drury WJ. III, Cox C, Lectka T. J. Org. Chem. 1998; 63: 4568
- 20a Lalonde M, Chan TH. Synthesis 1985; 817
- 20b Asami Y, Kawaguchi Y, Kanie Y, Abdu-Allah H, Suzuki K, Kanie O. Carbohydr. Res. 2019; 474: 51
- 21a Kondo Y. In Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts. Ishikawa T. Wiley; New York: 2009: 145
- 21b Ebisawa M, Ueno M, Oshima Y, Kondo Y. Tetrahedron Lett. 2007; 48: 8918
- 22 We performed SNAr reactions on substrates containing indole or indoline structures. The product yields suggested that TMSNEt2 is likely coordinating to the substrate. For further details, please refer to Scheme S3 in the Supporting Information.
- 23 Palmer AG. III, Kroenke CD, Loria JP. Methods Enzymol. 2001; 339: 204
- 24 Roselli CA, Gagné MR. Org. Biomol. Chem. 2018; 16: 2318
- 25 Selvakumar N, Srinivas D, Azhagan AM. Synthesis 2002; 2421
- 26 Henry MC, Senn HM, Sutherland A. J. Org. Chem. 2019; 84: 346