Subscribe to RSS
DOI: 10.1055/a-2495-3296
Inverse Electron-Demand Diels–Alder Reaction of Pyrazines with 2,5-Norbornadiene as Acetylene Precursor
This work was supported by the Russian Science Foundation (grant no. 23-73-10050, synthesis of compounds 1g–k, 3g–k, and 4g–j) and the Ministry of Education and Science of the Russian Federation within the state assignment (State Reg. No. 124020200072-0, synthesis of compounds 3a–d, 5, 6, 7, 1l–r, 3l,o,p).

Abstract
The reaction of pyrazines with 2,5-norbornadiene, an acetylene precursor, as a cascade of Diels–Alder reactions is reported yielding substituted pyridines. In contrast to the known examples of intermolecular Diels–Alder type reaction of pyrazines with acetylene, which usually leads to a mixture of products, in our case the formation of a single isomer was observed. The proposed approach allows the conversion of pyrazines with different types of substitution, except those containing methyl and amino donor groups, to pyridines. In addition, highly functionalized aminonicotic esters were obtained, which can be used for the synthesis of bioactive compounds. An unusual course of the Diels–Alder reaction was found in the case of tetrasubstituted pyrazines, which cleave organic nitriles instead of HCN. Quantum-chemical modeling of possible transition states showed that this Diels–Alder reaction proceeds via cycloaddition of 2,5-norbornadiene to pyrazine with sequential elimination of HCN and cyclopentadiene; the reaction pathway including initial formation of acetylene from norbornadiene and subsequent Diels–Alder reaction with the acetylene was rejected as kinetically unfavorable.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2495-3296.
- Supporting Information
- CIF File
Publication History
Received: 23 September 2024
Accepted after revision: 03 December 2024
Accepted Manuscript online:
03 December 2024
Article published online:
14 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Zhang F.-G, Chen Z, Tang X, Ma J.-A. Chem. Rev. 2021; 121: 14555
- 2 Mayer S, Lang K. Synthesis 2017; 49: 830
- 3 Schafzahl B, Knall AC, Slugovc C. Monatsh. Chem. 2023; 154: 1383
- 4 Boger DL, Sakya SM. J. Org. Chem. 1988; 53: 1415
- 5 de Bie DA, Ostrowica A, Geurtsen G, van der Plas HC. Tetrahedron 1988; 44: 2877
- 6 Biedrzycki M, de Bie DA, van der Plas HC. Tetrahedron 1989; 45: 6211
- 7 Gonzalez-de-Castro A, Robertson CM, Xiao J. J. Am. Chem. Soc. 2014; 136: 8350
- 8 Kaval N, van der Eycken J, Caroen J, Dehaen W, Strohmeier GA, Kappe CO, van der Eycken E. J. Comb. Chem. 2003; 5: 560
- 9 Paget SD, Foleno BD, Boggs CM, Goldschmidt RM, Hlasta DJ, Weidner-Wells MA, Werblood HM, Wira E, Bush K, Macielag M. J. Bioorg. Med. Chem. Lett. 2003; 13: 4173
- 10 Geurtsen B, de Bie DA, van der Plas HC. Tetrahedron 1989; 45: 6519
- 11 Neunhoeffer H, Werner G. Justus Liebigs Ann. Chem. 1972; 761: 39
- 12 Prokhorov AM, Prokhorova PE. Triazines and Tetrazines, In Progress in Heterocyclic Chemistry, Vol. 27. Gribble GW, Joule JA. Elsevier; Amsterdam: 2015. Chap. 6.3, 451-464
- 13 Khasanov AF, Kopchuk DS, Kim GA, Slepukhin PA, Kovalev IS, Santra S, Zyryanov GV, Majee A, Chupakhin ON, Charushin VN. ChemistrySelect 2018; 3: 339
- 14 Guda MR, Valieva MI, Kopchuk DS, Aluru R, Khasanov AF, Taniya OS, Novikov AS, Zyryanov GV, Ranu BC. J. Fluoresc. 2024; 34: 579
- 15 Krinochkin AP, Kopchuk DS, Kim GA, Valieva MI, Kudryashova EA, Ladin ED, Sharafieva ER, Santra S, Zyryanov GV, Chupakhin ON. Russ. Chem. Bull. 2022; 71: 2156
- 16 Krinochkin AP, Starnovskaya ES, Valieva MI, Kopchuk DS, Santra S, Slepukhin PA, Zyryanov GV, Majee A, Chupakhin ON. Mendeleev Commun. 2022; 32: 449
- 17 Savchuk MI, Khasanov AF, Kopchuk DS, Krinochkin AP, Nikonov IL, Starnovskaya ES, Shtaitz YK, Kovalev IS, Zyryanov GV, Chupakhin ON. Chem. Heterocycl. Compd. 2019; 55: 554
- 18 Starnovskaya ES, Valieva MI, Kopchuk DS, Taniya OS, Khasanov AF, Novikov AS, Slovesnova NV, Minin AS, Santra S, Zyryanov GV. New J. Chem. 2023; 47: 21720
- 19 Fatykhov RF, Savchuk MI, Starnovskaya ES, Bobkina MV, Kopchuk DS, Nosova EV, Zyryanov GV, Khalymbadzha IA, Chupakhin ON, Charushin VN, Kartsev VG. Mendeleev Commun. 2019; 29: 299
- 20 Fatykhov RF, Sharapov AD, Starnovskaya ES, Shtaitz YaK, Savchuk MI, Kopchuk DS, Nikonov IL, Zyryanov GV, Khalymbadzha IA, Chupakhin ON. Spectrochim. Acta, Part A 2022; 267: 120499
- 21 Flanagan SP, Goddard R, Guiry PJ. Tetrahedron 2005; 61: 9808
- 22 Branowska D, Olender E, Wysocki W, Karczmarzyk Z, Bancerz I, Ledwon P, Lapkowski M, Mirosław B, Urbanczyk-Lipkowska Z, Kalickie P. Electrochim. Acta 2016; 214: 19
- 23 Fatykhov RF, Khalymbadzha IA, Sharapov AD, Potapova AP, Tsmokalyuk AN, Gaviko VS. Synthesis 2024; 56: 1958
- 24 Case FH. J. Heterocycl. Chem. 1968; 5: 223
- 25 Buonomo JA, Everson DA, Weix DJ. Synthesis 2013; 45: 3099
- 26 Shigeno M, Kai Y, Yamada T, Hayashi K, Nozawa-Kumada K, Denneval C, Kondo Y. Asian J. Org. Chem. 2018; 7: 2082
- 27 Sarkar B, Kaim W, Schleid T, Hartenbach I, Fiedler J. Z. Anorg. Allg. Chem. 2003; 629: 1353
- 28 Dalkılıç E, Daştan A. Tetrahedron 2015; 71: 1966
- 29 Kozuch S, Shaik S. Acc. Chem. Res. 2011; 44: 101
- 30 Birely JH, Chesick JP. J. Phys. Chem. 1962; 66: 568
- 31 Herndon WC, Lowry LL. J. Am. Chem. Soc. 1964; 86: 1922
- 32 Walsh R, Wells JM. Int. J. Chem. Kinet. 1975; 7: 319
- 33 Roquitte BC. Can. J. Chem. 1964; 42: 2134
- 34 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision A.03 . Gaussian, Inc; Wallingford CT: 2016
- 35 Adamo C, Barone V. J. Chem. Phys. 1999; 110: 6158
- 36 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
- 37 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
- 38 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
- 39 Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA. Science 2017; 355: 49
- 40 Grimme S. Chem. Eur. J. 2012; 18: 9955
- 41 Shintou T, Ikeuchi F, Kuwabara H, Umihara K, Itoh I. Chem. Lett. 2005; 34: 836
- 42 Rusinov VL, Kovalev IS, Kozhevnikov DN, Ustinova MM, Chupakhin ON, Pokrovskii AG, Ilicheva TN, Belanov EF, Bormotov NI, Serova OA, Volkov GN. Pharm. Chem. J. 2005; 39: 630
- 43 Pardo MA, Perez JM, del Valle MA, Godoy MA, Diaz FR. J. Chil. Chem. Soc. 2014; 59: 2464