Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis
DOI: 10.1055/a-2502-8374
DOI: 10.1055/a-2502-8374
feature
Phenanthrolines as Energy Transfer Photocatalysts for the E → Z Isomerization of Alkenes
Supported by the National Natural Science Foundation of China (22101279), Beijing National Laboratory for Molecular Sciences (BNLMS2023014), and high level introduction of talent research start-up fund of Putian University (ZY240123).

Abstract
Phenanthrolines have been widely employed as chelating ligands for transition metals. Herein, this study investigates the utility of substituted o-phenanthrolines as independent photosensitizers for the E → Z isomerization of alkenes. The findings underscore the versatility of o-phenanthrolines, providing a straightforward, metal-free, and cost-effective method for synthesizing Z-alkenes.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2502-8374.
- Supporting Information
Publication History
Received: 01 October 2024
Accepted after revision: 16 December 2024
Accepted Manuscript online:
16 December 2024
Article published online:
10 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Sammes PG, Yahioglu G. Chem. Soc. Rev. 1994; 23: 327
- 1b Accorsi G, Listorti A, Yoosaf K, Armaroli N. Chem. Soc. Rev. 2009; 38: 1690
- 1c Brandt WW, Dwyer FP, Gyarfas ED. Chem. Rev. 1954; 54: 959
- 2a Bencini A, Lippolis V. Coord. Chem. Rev. 2010; 254: 2096
- 2b Tao Y, Yang C, Qin J. Chem. Soc. Rev. 2011; 40: 2943
- 2c McCann M, McGinley J, Ni K, O’Connor M, Kavanagh K, McKee V, Colleran J, Devereux M, Gathergood N, Barron N, Prisecaru A, Kellett A. Chem. Commun. 2013; 49: 2341
- 2d Alreja P, Kaur N. RSC Adv. 2016; 6: 23169
- 2e Wu K, Zhang T, Zhan L, Zhong C, Gong S, Lu Z.-H, Yang C. Adv. Opt. Mater. 2016; 4: 1558
- 2f Zhang Y, Wu J, Song J, Chen Z, He J, Wang X, Liu H, Chen S, Qu J, Wong W.-Y. Adv. Electron. Mater. 2019; 5: 1800677
- 2g Tashiro S, Shimizu S, Kuritani M, Shionoya M. Dalton Trans. 2020; 49: 13948
- 2h Yang X.-G, Lu X.-M, Zhai Z.-M, Qin J.-H, Chang X.-H, Han M.-L, Li F.-F, Ma L.-F. Inorg. Chem. Front. 2020; 7: 2224
- 2i Li J, Nguyen HM. Acc. Chem. Res. 2022; 55: 3738
- 2j Queffélec C, Pati PB, Pellegrin Y. Chem. Rev. 2024; 124: 6700
- 3 Bawden JC, Francis PS, DiLuzio S, Hayne DJ, Doeven EH, Truong J, Alexander R, Henderson LC, Gómez DE, Massi M, Armstrong BI, Draper FA, Bernhard S, Connell TU. J. Am. Chem. Soc. 2022; 144: 11189
- 4 Morozkov GV, Abel AS, Filatov MA, Nefedov SE, Roznyatovsky VA, Cheprakov AV, Mitrofanov AY, Ziankou IS, Averin AD, Beletskaya IP, Michalak J, Bucher C, Bonneviot L, Bessmertnykh-Lemeune A. Dalton Trans. 2022; 51: 13612
- 5a Hossain A, Bhattacharyya A, Reiser O. Science 2019; 364: eaav9713
- 5b Beaudelot J, Oger S, Peruško S, Phan T.-A, Teunens T, Moucheron C, Evano G. Chem. Rev. 2022; 122: 16365
- 6a Singh K, Staig SJ, Weaver JD. J. Am. Chem. Soc. 2014; 136: 5275
- 6b Molloy JJ, Metternich JB, Daniliuc CG, Watson AJ. B, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 3168
- 6c Bhadra M, Kandambeth S, Sahoo MK, Addicoat M, Balaraman E, Banerjee R. J. Am. Chem. Soc. 2019; 141: 6152
- 6d Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Chem. Rev. 2021; 122: 2650
- 6e Qiao S, Chen K, Liu Q, Wang Z, Chen X. Chin. Chem. Lett. 2024; 35: 108979
- 6f Ilies L, Yoshida T, Nakamura E. J. Am. Chem. Soc. 2012; 134: 16951
- 7a Kudo E, Sasaki K, Kawamata S, Yamamoto K, Murahashi T. Nat. Commun. 2021; 12: 1473
- 7b Metternich JB, Gilmour R. J. Am. Chem. Soc. 2015; 137: 11254
- 7c Cai W, Fan H, Ding D, Zhang Y, Wang W. Chem. Commun. 2017; 53: 12918
- 8a Bao L, Cheng J.-T, Wang Z.-X, Chen X.-Y. Org. Chem. Front. 2022; 9: 973
- 8b Brégent T, Bouillon J.-P, Poisson T. Org. Lett. 2020; 22: 7688
- 8c Li H, Chen H, Zhou Y, Huang J, Yi J, Zhao H, Wang W, Jing L. Chem. Asian J. 2020; 15: 555
- 8d Cruché C, Neiderer W, Collins SK. ACS Catal. 2021; 11: 8829
- 8e Huang H, Zhang Y, Ji P, Mariano PS, Wang W. Green Synth. Catal. 2021; 2: 27
- 9a Zhang Q.-Q, Lin P.-P, Yang L, Tan D.-H, Feng S.-X, Wang H, Li Q. Chin. J. Org. Chem. 2020; 40: 3314
- 9b Song F, Wang F, Guo L, Feng X, Zhang Y, Chu L. Angew. Chem. Int. Ed. 2019; 59: 177
- 9c Gong L, Ye Z. Chin. J. Org. Chem. 2022; 42: 2602
- 10a Metternich JB, Sagebiel S, Lückener A, Lamping S, Ravoo BJ, Gilmour R. Chem. Eur. J. 2018; 24: 4228
- 10b Metternich JB, Artiukhin DG, Holland MC, von Bremen-Kühne M, Neugebauer J, Gilmour R. J. Org. Chem. 2017; 82: 9955
- 10c Livingstone K, Tenberge M, Pape F, Daniliuc CG, Jamieson C, Gilmour R. Org. Lett. 2019; 21: 9677
- 10d Molloy JJ, Schäfer M, Wienhold M, Morack T, Daniliuc CG, Gilmour R. Science 2020; 369: 302
- 10e Metternich JB, Gilmour R. J. Am. Chem. Soc. 2016; 138: 1040
- 11 Neveselý T, Molloy JJ, McLaughlin C, Brüss L, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2022; 61: e202113600
- 12 Xu J, Liu N, Lv H, He C, Liu Z, Shen X, Cheng F, Fan B. Green Chem. 2020; 22: 2739
- 13 Yao Y, Yu Y, Shi M.-L, Lin R.-D, Li K, Wang N. J. Catal. 2023; 428: 115153
- 14 Fukazawa M, Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2020; 22: 2303
- 15 Zubar V, Sklyaruk J, Brzozowska A, Rueping M. Org. Lett. 2020; 22: 5423
- 16 Tyszka-Gumkowska A, Peta B, Kosik K, Szepiński E, Kajetanowicz A, Grela K. New J. Chem. 2024; 48: 4976
- 17 Mudududdla R, Sharma R, Abbat S, Bharatam PV, Vishwakarma RA, Bharate SB. Chem. Commun. 2014; 50: 12076
- 18 Lempenauer L, Duñach E, Lemière G. Chem. Eur. J. 2017; 23: 10285
- 19 Brégent T, Bouillon J.-P, Poisson T. Org. Lett. 2020; 22: 7688