Subscribe to RSS
DOI: 10.1055/a-2504-1911
MicroRNA Profiling in Chronic Limb-Threatening Ischemia Their Role in Arteriogenesis
Funding The author(s) disclosed receipt of the following financial support for the laboratory work of this article: this work was supported by the Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) Universitas Gadjah Mada [grant number: 085/E5/PG.02.00.PT/2022].![](https://www.thieme-connect.de/media/ija/EFirst/lookinside/thumbnails/10-1055-a-2504-1911_20240052-1.jpg)
Abstract
Chronic limb-threatening ischemia (CLTI) represents poses a substantial threat with escalating mortality and amputation rates. Despite the existence of various clinical techniques for diagnosing CLTI, the role of microRNAs (miRNAs) in arteriogenesis remains ambiguous. Comprehensive knowledge on miRNAs may facilitate the advancement of targeted therapy pertaining to the enhancement of collateral blood flow in obstructed vessels. Therefore, this study aimed at analyzing arteriogenesis-associated plasma miRNA profiles in patients with CLTI using gene expression. Samples were acquired from the collateral arteries (CA group, n = 3) and the contralateral healthy limb (healthy artery; HA group, n = 3) of a single set of patients with CLTI. The RNA extracted from the samples was assessed for concentration and purity. A normalization factor was used to address variations in analyte abundance and/or quality across the samples. Subsequently, individual RNA molecules were directly quantified and subjected to comparative analysis between the CA and HA groups to identify the miRNAs involved in arteriogenesis. The five arteriogenesis-related miRNAs exhibiting maximum upregulation were miR-301b–3p, miR-221–5p, miR–639, miR-34a–5p, and let-7a–5p, while the five most downregulated miRNAs included miR-151a–5p, miR-371a–5p, miR-651–5p, miR-510–5p, and miR-660–5p. Summarily, this study documented marked upregulation and downregulation of miRNAs associated with arteriogenesis in the collateral arteries of patients with CLTI as compared with their contralateral healthy limbs. Possible mechanisms involved, including the regulation of YAP/TAZ pathway, TGFBR3 mRNA, SIRT1 expression, and other processes have shown to be modulated by miRNAs fluctuations.
Keywords
chronic limb-threatening ischemia - microRNA - sequencing - arteriogenesis - YAP/TAZ pathway - TGFBR3 mRNA - SIRT1 expressionPublication History
Article published online:
13 January 2025
© 2025. International College of Angiology. This article is published by Thieme.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Diehm C, Lange S, Darius H. et al. Association of low ankle brachial index with high mortality in primary care. Eur Heart J 2006; 27 (14) 1743-1749
- 2 Aboyans V, Ricco J-B, Bartelink MEL. et al; ESC Scientific Document Group. ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur Heart J 2018; 39 (09) 763-816
- 3 Berger JS, Hochman J, Lobach I, Adelman MA, Riles TS, Rockman CB. Modifiable risk factor burden and the prevalence of peripheral artery disease in different vascular territories. J Vasc Surg 2013; 58 (03) 673-81.e1
- 4 Varu VN, Hogg ME, Kibbe MR. Critical limb ischemia. J Vasc Surg 2010; 51 (01) 230-241
- 5 Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG. TASC II Working Group. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 2007; 45 (1, Suppl S): S5-S67
- 6 Aday AW, Matsushita K. Epidemiology of peripheral artery disease and polyvascular disease. Circ Res 2021; 128 (12) 1818-1832
- 7 Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 2014; 276 (06) 618-632
- 8 Damay VA, Setiawan, Lesmana R. et al. Electronic cigarette and atherosclerosis: a comprehensive literature review of latest evidences. Int J Vasc Med 2022; 2022: 4136811
- 9 Krishna SM, Moxon JV, Golledge J. A review of the pathophysiology and potential biomarkers for peripheral artery disease. Int J Mol Sci 2015; 16 (05) 11294-11322
- 10 Heil M, Eitenmüller I, Schmitz-Rixen T, Schaper W. Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 2006; 10 (01) 45-55
- 11 Benjamin EJ, Virani SS, Callaway CW. et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 2018; 137 (12) e67-e492
- 12 Bonaca MP, Bauersachs RM, Anand SS. et al. Rivaroxaban in peripheral artery disease after revascularization. N Engl J Med 2020; 382 (21) 1994-2004
- 13 Gerhard-Herman MD, Gornik HL, Barrett C. et al. AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary. J Am Coll Cardiol 2017; 69 (11) 1465-1508
- 14 Baubeta Fridh E, Andersson M, Thuresson M. et al. Amputation rates, mortality, and pre-operative comorbidities in patients revascularised for intermittent claudication or critical limb ischaemia: a population based study. Eur J Vasc Endovasc Surg 2017; 54 (04) 480-486
- 15 Vartanian SM, Conte MS. Surgical intervention for peripheral arterial disease. Circ Res 2015; 116 (09) 1614-1628
- 16 Annex BH. Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol 2013; 10 (07) 387-396
- 17 Rizzi A, Benagiano V, Ribatti D. Angiogenesis versus arteriogenesis. Rom J Morphol Embryol 2017; 58 (01) 15-19
- 18 Simon F, Oberhuber A, Floros N, Düppers P, Schelzig H, Duran M. Pathophysiology of chronic limb ischemia. Gefasschirurgie 2018; 23 (Suppl. 01) 13-18
- 19 Schneckmann R, Suvorava T, Hundhausen C. et al. Endothelial hyaluronan synthase 3 augments postischemic arteriogenesis through CD44/eNOS signaling. Arterioscler Thromb Vasc Biol 2021; 41 (10) 2551-2562
- 20 Godo S, Shimokawa H. Endothelial functions. Arterioscler Thromb Vasc Biol 2017; 37 (09) e108-e114
- 21 Hansen NW, Hansen AJ, Sams A. The endothelial border to health: mechanistic evidence of the hyperglycemic culprit of inflammatory disease acceleration. IUBMB Life 2017; 69 (03) 148-161
- 22 Ruiter MS, van Golde JM, Schaper NC, Stehouwer CD, Huijberts MS. Diabetes impairs arteriogenesis in the peripheral circulation: review of molecular mechanisms. Clin Sci (Lond) 2010; 119 (06) 225-238
- 23 Neth P, Nazari-Jahantigh M, Schober A, Weber C. MicroRNAs in flow-dependent vascular remodelling. Cardiovasc Res 2013; 99 (02) 294-303
- 24 Heuslein JL, McDonnell SP, Song J, Annex BH, Price RJ. MicroRNA 146a regulates perfusion recovery in response to arterial occlusion via arteriogenesis. Front Bioeng Biotechnol 2018; 6: 1
- 25 Heuslein JL, Gorick CM, McDonnell SP, Song J, Annex BH, Price RJ. Exposure of endothelium to biomimetic flow waveforms yields identification of miR-199a-5p as a potent regulator of arteriogenesis. Mol Ther Nucleic Acids 2018; 12: 829-844
- 26 Lei Z, van Mil A, Brandt MM. et al. MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway. J Cell Mol Med 2015; 19 (08) 1994-2005
- 27 Ring A, Ismaeel A, Wechsler M. et al. MicroRNAs in peripheral artery disease: potential biomarkers and pathophysiological mechanisms. Ther Adv Cardiovasc Dis 2022; 16: 17 539447221096940
- 28 Troidl K, Hammerschick T, Albarran-Juarez J. et al. Shear stress–induced mir-143–3p in collateral arteries contributes to outward vessel growth by targeting collagen V-α2. Arterioscler Thromb Vasc Biol 2020; 40 (05) e126-e137
- 29 Landskroner-Eiger S, Qiu C, Perrotta P. et al. Endothelial miR-17∼92 cluster negatively regulates arteriogenesis via miRNA-19 repression of WNT signaling. Proc Natl Acad Sci U S A 2015; 112 (41) 12812-12817
- 30 Barć P, Antkiewicz M, Śliwa B. et al. Double VEGF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus. J Cardiovasc Transl Res 2021; 14 (03) 409-415
- 31 Kesidou D, da Costa Martins PA, de Windt LJ, Brittan M, Beqqali A, Baker AH. Extracellular vesicle miRNAs in the promotion of cardiac neovascularisation. Front Physiol 2020; 11: 579892
- 32 Chen X, Ba Y, Ma L. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18 (10) 997-1006
- 33 Dong X, Chang M, Song X, Ding S, Xie L, Song X. Plasma miR-1247-5p, miR-301b-3p and miR-105-5p as potential biomarkers for early diagnosis of non-small cell lung cancer. Thorac Cancer 2021; 12 (04) 539-548
- 34 Fan Y, Li Y, Zhu Y. et al. miR-301b-3p regulates breast cancer cell proliferation, migration, and invasion by targeting NR3C2. J Oncol 2021; 2021: 8810517
- 35 Han X, Li C, Ji Q. et al. SLC26A4-AS1 aggravates AngII-induced cardiac hypertrophy by enhancing SLC26A4 expression. Arq Bras Cardiol 2023; 120 (04) e20210933
- 36 Bertero T, Cottrill KA, Annis S. et al. A YAP/TAZ-miR-130/301 molecular circuit exerts systems-level control of fibrosis in a network of human diseases and physiologic conditions. Sci Rep 2015; 5 (01) 18277
- 37 Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 2009; 104 (04) 476-487
- 38 He Q, Shao D, Hao S. et al. CircSCAP aggravates oxidized low-density lipoprotein-induced macrophage injury by upregulating PDE3B by miR-221–5p in atherosclerosis. J Cardiovasc Pharmacol 2021; 78 (05) e749-e760
- 39 Ismail A, Abulsoud AI, Mansour OA, Fawzy A. Diagnostic significance of miR-639 and miR-10b in Breast cancer patients. Meta Gene 2019; 19: 155-159
- 40 Gan J, Yuan J, Liu Y. et al. Circular RNA_101237 mediates anoxia/reoxygenation injury by targeting let-7a-5p/IGF2BP3 in cardiomyocytes. Int J Mol Med 2020; 45 (02) 451-460
- 41 Wang S, Zhou H, Wu D. et al. MicroRNA let-7a regulates angiogenesis by targeting TGFBR3 mRNA. J Cell Mol Med 2019; 23 (01) 556-567
- 42 Zhang Y, Tang S, Yang W, Du F. let-7b-5p suppresses the proliferation and migration of pulmonary artery smooth muscle cells via down-regulating IGF1. Clinics (Sao Paulo) 2022; 77: 100051
- 43 Wang H, Jin Z, Pei T. et al. Long noncoding RNAs C2dat1 enhances vascular smooth muscle cell proliferation and migration by targeting MiR-34a-5p. J Cell Biochem 2019; 120 (03) 3001-3008
- 44 Sundar IK, Li D, Rahman I. Small RNA-sequence analysis of plasma-derived extracellular vesicle miRNAs in smokers and patients with chronic obstructive pulmonary disease as circulating biomarkers. J Extracell Vesicles 2019; 8 (01) 1684816
- 45 Neiburga KD, Vilne B, Bauer S. et al; DigiMed Bayern Consortium. Vascular tissue specific miRNA profiles reveal novel correlations with risk factors in coronary artery disease. Biomolecules 2021; 11 (11) 1683
- 46 Jury D, Daugaard I, Sanders KJ, Hansen LL, Agalliu D, Pedersen IM. miR-151a enhances Slug dependent angiogenesis. Oncotarget 2020; 11 (23) 2160-2171
- 47 Lv Z, Qiu X, Jin P. et al. MiR-371a-5p positively associates with hepatocellular carcinoma malignancy but sensitizes cancer cells to oxaliplatin by suppressing BECN1-dependent autophagy. Life (Basel) 2022; 12 (10) 1651
- 48 Ahmadi H, Jang TL, Daneshmand S, Ghodoussipour S. Editorial by Bendu K. Konneh, John T. Lafin and Aditya Bagrodia on pp. 341-342 of this issue: MicroRNA-371a-3p as a blood-based biomarker in testis cancer. Asian J Urol 2021; 8 (04) 400-406
- 49 d'Avenia M, Citro R, De Marco M. et al. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy. Cell Death Dis 2015; 6 (10) e1948
- 50 Li MP, Hao ZC, Yan MQ, Xia CL, Wang ZH, Feng YQ. Possible causes of atherosclerosis: lncRNA COLCA1 induces oxidative stress in human coronary artery endothelial cells and impairs wound healing. Ann Transl Med 2022; 10 (06) 286-286
- 51 Lang Y, Kong X, Liu B, Jin X, Chen L, Xu S. microRNA-651-5p affects the proliferation, migration, and invasion of lung cancer cells by regulating Calmodulin 2 expression. Clin Respir J 2023; 17 (08) 754-763
- 52 Zhao H, Yang X, Liu J. et al. Overexpression of miR-651-5p inhibits ultraviolet radiation-induced malignant biological behaviors of sebaceous gland carcinoma cells by targeting ZEB2 . Ann Transl Med 2022; 10 (09) 517-517
- 53 Guo QJ, Mills JN, Bandurraga SG. et al. MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer. Breast Cancer Res 2013; 15 (04) R70
- 54 Yu X, Zhang X, Bi T. et al. MiRNA expression signature for potentially predicting the prognosis of ovarian serous carcinoma. Tumour Biol 2013; 34 (06) 3501-3508
- 55 Chen D, Li Y, Yu Z. et al. Downregulated microRNA-510-5p acts as a tumor suppressor in renal cell carcinoma. Mol Med Rep 2015; 12 (02) 3061-3066
- 56 Bye A, Røsjø H, Nauman J. et al. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals - the HUNT study. J Mol Cell Cardiol 2016; 97: 162-168
- 57 Jakob P, Kacprowski T, Briand-Schumacher S. et al. Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction. Eur Heart J 2017; 38 (07) 511-515
- 58 Zhang J, He L. Circulating miR-660-5p is associated with no-reflow phenomenon in patients with ST segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Anatol J Cardiol 2021; 25 (05) 323-329
- 59 Liu H, Ma X, Niu N. et al. MIR-301b-3p promotes lung adenocarcinoma cell proliferation, migration and invasion by targeting DLC1. Technol Cancer Res Treat 2021; 20: 15 33033821990036
- 60 Felli N, Fontana L, Pelosi E. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 2005; 102 (50) 18081-18086
- 61 Dentelli P, Rosso A, Orso F, Olgasi C, Taverna D, Brizzi MF. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol 2010; 30 (08) 1562-1568
- 62 Medina R, Zaidi SK, Liu CG. et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 2008; 68 (08) 2773-2780
- 63 Wang YH, Yin YW, Zhou H, Cao YD. miR-639 is associated with advanced cancer stages and promotes proliferation and migration of nasopharyngeal carcinoma. Oncol Lett 2018; 16 (06) 6903-6909
- 64 Lin Z, Sun L, Chen W. et al. miR-639 regulates transforming growth factor beta-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting FOXC1. Cancer Sci 2014; 105 (10) 1288-1298
- 65 Xiao J, Liu Y, Wu F. et al. miR-639 expression is silenced by DNMT3A-mediated hypermethylation and functions as a tumor suppressor in liver cancer cells. Mol Ther 2020; 28 (02) 587-598
- 66 Anene C, Graham AM, Boyne J, Roberts W. Platelet microparticle delivered microRNA-Let-7a promotes the angiogenic switch. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (08) 2633-2643
- 67 Hasakova K, Reis R, Vician M, Zeman M, Herichova I. Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression. PLoS One 2019; 14 (10) e0224396
- 68 Hart M, Diener C, Lunkes L. et al. miR-34a-5p as molecular hub of pathomechanisms in Huntington's disease. Mol Med 2023; 29 (01) 43
- 69 Daugaard I, Sanders KJ, Idica A. et al. miR-151a induces partial EMT by regulating E-cadherin in NSCLC cells. Oncogenesis 2017; 6 (07) e366
- 70 Xie Y, Zhang Y, Liu X. et al. miR-151a-5p promotes the proliferation and metastasis of colorectal carcinoma cells by targeting AGMAT. Oncol Rep 2023; 49 (03) 50
- 71 Fortunato O, Boeri M, Moro M. et al. Mir-660 is downregulated in lung cancer patients and its replacement inhibits lung tumorigenesis by targeting MDM2-p53 interaction. Cell Death Dis 2014; 5 (12) e1564
- 72 Peng B, Li C, He L, Tian M, Li X. miR-660-5p promotes breast cancer progression through down-regulating TET2 and activating PI3K/AKT/mTOR signaling. Braz J Med Biol Res 2020; 53 (12) e9740