Subscribe to RSS
DOI: 10.1055/a-2504-3357
Synthesis of 3,5-Disubstituted Anilines via Sequential Mo-Catalyzed Deoxygenative Benzene Formation and Pd-Catalyzed Amination Reactions
We are grateful for financial support from the National Key Research and Development Program of China (2021YFA1502500), the National Natural Science Foundation of China (22171236 and 22371238).

Abstract
The substituted anilines play a pivotal role as structural motifs in agrochemicals, organic polymers, and pharmaceuticals, and great efforts have been dedicated to advancing their synthesis. However, the highly efficient and selective synthesis of meta,meta-disubstituted anilines remains a challenge. Here, the synthesis of meta,meta-disubstituted anilines via sequential Mo-catalyzed deoxygenative benzene formation and Pd-catalyzed amination reactions is reported. By employing this method, a wide range of meta,meta-disubstituted anilines were accessed with up to 89% yield from readily accessible ynones, allylic amines, and amines.
Key words
molybdenum catalysis - palladium catalysis - deoxygenative benzene formation - C–N bond cross coupling - 3,5-disubstituted anilinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2504-3357.
- Supporting Information
Publication History
Received: 04 November 2024
Accepted after revision: 17 December 2024
Accepted Manuscript online:
17 December 2024
Article published online:
23 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 1b Hartwig JF, Shaughnessy KH, Shekhar S, Green RA. In Organic Reactions, Vol. 100, Chap. 14. Denmark SE. Wiley; New York: 2020: 853-958
- 2 Olah GA, Reddy VP, Prakash GK. S. Friedel–Crafts Reactions, In Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 12. Wiley; New York: 2000: 159-199
- 3a Ma D, Cai Q. Acc. Chem. Res. 2008; 41: 1450
- 3b Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
- 3c Sambiagio C, Marsden SP, Blacker MA, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
- 3d Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
- 3e Cai Q, Zhou W. Chin. J. Chem. 2020; 38: 879
- 4a Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Chem. Rev. 2022; 122: 5682
- 4b Phipps RJ, Gaunt MJ. Science 2009; 323: 1593
- 4c Tang RY, Li G, Yu JQ. Nature 2014; 507: 215
- 5a Wang P, Li G.-C, Jain P, Farmer ME, He J, Shen P.-X, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14092
- 5b Anugu RR, Munnuri S, Falck JR. J. Am. Chem. Soc. 2020; 142: 5266
- 5c Lv Q, Hu Z, Zhang Y, Zhang Z, Lei H. J. Am. Chem. Soc. 2024; 146: 1735
- 6a Hong WP, Iosub AV, Stahl SS. J. Am. Chem. Soc. 2013; 135: 13664
- 6b Dighe US, Julia F, Luridiana A, Douglas JJ, Leonori D. Nature 2020; 584: 75
- 6c Makarov SA, Bakiev NA, Eshemeteva DA. Org. Chem. Front. 2023; 10: 2760
- 6d Zhao B.-Y, Jia Q, Wang Y.-Q. Nat. Commun. 2024; 15: 2415
- 7a Wang J.-L, Li J.-T, Wu G.-Y, Zhuo C.-X. Trends Chem. 2024; 6: 487
- 7b Cao L.-Y, Luo J.-N, Yao J.-S, Wang D.-K, Dong Y.-Q, Zheng C, Zhuo C.-X. Angew. Chem. Int. Ed. 2021; 60: 15254
- 7c Dong Y.-Q, Wang K, Zhuo C.-X. ACS Catal. 2022; 12: 11428
- 7d Cao L.-Y, Wang J.-L, Wang K, Wu J.-B, Wang D.-K, Peng J.-M, Bai J, Zhuo C.-X. J. Am. Chem. Soc. 2023; 145: 2765
- 7e Dong Y.-Q, Shi X.-N, Cao L.-Y, Bai J, Zhuo C.-X. Org. Chem. Front. 2023; 10: 3544
- 7f Yu Y.-Z, Bai J, Peng J.-M, Yao J.-S, Zhuo C.-X. J. Am. Chem. Soc. 2023; 145: 8781
- 7g Wang J.-L, Wu G.-Y, Luo J.-N, Liu J.-L, Zhuo C.-X. J. Am. Chem. Soc. 2024; 146: 5605
- 7h Yu Y.-Z, Su H.-Y, Zhuo C.-X. Angew. Chem. Int. Ed. 2024; 63: e202412299
- 8a Asako S, Ishihara S, Hirata K, Takai K. J. Am. Chem. Soc. 2019; 141: 9832
- 8b Asako S, Kobayashi T, Ishihara S, Takai K. Asian J. Org. Chem. 2021; 10: 753
- 8c Banerjee S, Kobayashi T, Takai K, Asako S, Ilies L. Org. Lett. 2022; 24: 7242
- 8d Chu H, Liu Q, Shen M.-H, Xu H.-D. Adv. Synth. Catal. 2024; 366: 4661
- 9a Paul F, Patt J, Hartwig JF. J. Am. Chem. Soc. 1994; 116: 5969
- 9b Guram AS, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 7901
- 10a Surry DS, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 10354
- 10b Maiti D, Fors BP, Henderson JL, Nakamura Y, Buchwald SL. Chem. Sci. 2011; 2: 57
- 10c Ingoglia BT, Wagen CC, Buchwald SL. Tetrahedron 2019; 75: 4199
- 11 Bauer JD, Foster MS, Hugdahl JD, Burns KL, May SW, Pollock SH, Cutler HG, Cutler SJ. Med. Chem. Res. 2007; 16: 119
- 12 Shetty RS, Lee Y, Liu B, Husain A, Joseph RW, Lu Y, Nelson D, Mihelcic J, Chao W, Moffett KK, Schumacher A, Flubacher D, Stojanovic A, Bukhtiyarova M, Williams K, Lee KJ, Ochman AR, Saporito MS, Moore WR, Flynn GA, Dorsey BD, Springman EB, Fujimoto T, Kelly MJ. J. Med. Chem. 2011; 54: 179
For selected reviews, see:
For a recent review, see:
For selected examples, see:
For a review, see:
For selected examples, see:
For selected examples from others, see: