Subscribe to RSS
DOI: 10.1055/a-2510-5370
Electrolyte Effect on Electrochemically Controlled Polymerizations
This work was supported by the NSF (Grant CHE-1809116 and CHE-2400314 to P.L.D., and 1532232 for NMR spectroscopy). R.N.M. was supported in part by NRT-INFEWS (Grant DGE-1735325).

Abstract
Electrochemically controlled redox-switchable polymerization uses an electric potential to bias the monomer selectivity of a catalyst. Many ferrocene-appended catalysts can exist in two oxidation states, a neutral reduced state and an oxidized cationic state. Electrochemical generation of the oxidized cationic state produces a charged species whose counteranion is determined by the identity of the supporting electrolyte anion. Herein, the role the counteranion has on monomer selectivity and polymerization kinetics is investigated. Minimal differences in monomer selectivity in the reduced state was found, however, in the oxidized state, the coordinating ability of the counteranion greatly influenced the rate of polymerization. How activity differences governed by the choice of electrolyte can be utilized to access desired diblock copolymers is also described.
Key words
redox-switchable catalysis - electrochemistry - ring-opening polymerization - organometallic chemistrySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2510-5370.
- Supporting Information
Publication History
Received: 23 November 2024
Accepted after revision: 06 January 2025
Accepted Manuscript online:
06 January 2025
Article published online:
11 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Zhao B, Wilson P. Polym. Chem. 2023; 14: 2000
- 2 Supej MJ, McLoughlin EA, Hsu JH, Fors BP. Chem. Sci. 2021; 12: 10544
- 3 Supej MJ, Peterson BM, Fors BP. Chem 2020; 6: 1794
- 4 Peterson BM, Lin S, Fors BP. J. Am. Chem. Soc. 2018; 140: 2076
- 5 Peterson BM, Kottisch V, Supej MJ, Fors BP. ACS Cent. Sci. 2018; 4: 1228
- 6 Zhong Y, Feng Q, Wang X, Chen J, Cai W, Tong R. ACS Macro Lett. 2020; 9: 1114
- 7 Chmielarz P, Fantin M, Park S, Isse AA, Gennaro A, Magenau AJ. D, Sobkowiak A, Matyjaszewski K. Prog. Polym. Sci. 2017; 69: 47
- 8 Shawver NM, Doerr AM, Long BK. J. Polym. Sci. 2023; 61: 361
- 9 Shen Y, Mu Y, Wang D, Liu C, Diaconescu PL. ACS Appl. Mater. Interfaces 2023; 15: 28851
- 10 Huang Y, Hu C, Pang X, Zhou Y, Duan R, Sun Z, Chen X. Angew. Chem. Int. Ed. 2022; 61: e202202660
- 11 Magenau AJ. D, Strandwitz NC, Gennaro A, Matyjaszewski K. Science 2011; 332: 81
- 12 Zhang L, Koreeda M. Org. Lett. 2002; 4: 3755
- 13 Deng S, Jolly BJ, Wilkes JR, Mu Y, Byers JA, Do LH, Miller AJ. M, Wang D, Liu C, Diaconescu PL. Nat. Rev. Methods Primers 2023; 3: 28
- 14 Deng S, Diaconescu PL. Inorg. Chem. Front. 2021; 8: 2088
- 15 Wei J, Diaconescu PL. Acc. Chem. Res. 2019; 52: 415
- 16 Shen Y, Shepard SM, Reed CJ, Diaconescu PL. Chem. Commun. 2019; 55: 5587
- 17 Dai R, Diaconescu PL. Dalton Trans. 2019; 48: 2996
- 18 Abubekerov M, Vlček V, Wei J, Miehlich ME, Quan SM, Meyer K, Neuhauser D, Diaconescu PL. iScience 2018; 7: 120
- 19 Wei J, Riffel MN, Diaconescu PL. Macromolecules 2017; 50: 1847
- 20 Quan SM, Wei J, Diaconescu PL. Organometallics 2017; 36: 4451
- 21 Lowe MY, Shu S, Quan SM, Diaconescu PL. Inorg. Chem. Front. 2017; 4: 1798
- 22 Shepard SM, Diaconescu PL. Organometallics 2016; 35: 2446
- 23 Quan SM, Wang X, Zhang R, Diaconescu PL. Macromolecules 2016; 49: 6768
- 24 Huang W, Diaconescu PL. Inorg. Chem. 2016; 55: 10013
- 25 Abubekerov M, Shepard SM, Diaconescu PL. Eur. J. Inorg. Chem. 2016; 2634
- 26 Wang X, Thevenon A, Brosmer JL, Yu I, Khan SI, Mehrkhodavandi P, Diaconescu PL. J. Am. Chem. Soc. 2014; 136: 11264
- 27 Broderick EM, Guo N, Wu T, Vogel CS, Xu C, Sutter J, Miller JT, Meyer K, Cantat T, Diaconescu PL. Chem. Commun. 2011; 47: 9897
- 28 Broderick EM, Guo N, Vogel CS, Xu C, Sutter J, Miller JT, Meyer K, Mehrkhodavandi P, Diaconescu PL. J. Am. Chem. Soc. 2011; 133: 9278
- 29 Thompson MS, Johnson SA, Gonsales SA, Brown GM, Kristufek SL, Byers JA. Macromolecules 2023; 56: 3024
- 30 Biernesser AB, Delle Chiaie KR, Curley JB, Byers JA. Angew. Chem. Int. Ed. 2016; 55: 5251
- 31 Biernesser AB, Li B, Byers JA. J. Am. Chem. Soc. 2013; 135: 16553
- 32 Doerr AM, Burroughs JM, Legaux NM, Long BK. Catal. Sci. Technol. 2020; 10: 6501
- 33 Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. ACS Catal. 2020; 10: 14457
- 34 Kaiser JM, Long BK. Coord. Chem. Rev. 2018; 372: 141
- 35 Anderson WC, Rhinehart JL, Tennyson AG, Long BK. J. Am. Chem. Soc. 2016; 138: 774
- 36 Anderson WC, Long BK. ACS Macro Lett. 2016; 5: 1029
- 37 Brown LA, Rhinehart JL, Long BK. ACS Catal. 2015; 5: 6057
- 38 Chen C. Nat. Rev. Chem. 2018; 2: 6
- 39 Chen C. ACS Catal. 2018; 8: 5506
- 40 Zou W, Pang W, Chen C. Inorg. Chem. Front. 2017; 4: 795
- 41 Zhao M, Chen C. ACS Catal. 2017; 7: 7490
- 42 Chen M, Yang B, Chen C. Angew. Chem. Int. Ed. 2015; 54: 15520
- 43 Liu J, Blosch SE, Volokhova AS, Crater ER, Gallin CF, Moore RB, Matson JB, Byers JA. Angew. Chem. Int. Ed. 2024; 63: e202317699
- 44 Qi M, Dong Q, Wang D, Byers JA. J. Am. Chem. Soc. 2018; 140: 5686
- 45 Hern ZC, Quan SM, Dai R, Lai A, Wang Y, Liu C, Diaconescu PL. J. Am. Chem. Soc. 2021; 143: 19802
- 46 Qi M, Zhang H, Dong Q, Li J, Musgrave RA, Zhao Y, Dulock N, Wang D, Byers JA. Chem. Sci. 2021; 12: 9042
- 47 Roovers JE. L, Bywater S. Can. J. Chem. 1968; 46: 2711
- 48 Chen M, Dugger JW, Li X, Wang Y, Kumar R, Meek KM, Uhrig DW, Browning JF, Madsen LA, Long TE, Lokitz BS. J. Polym. Sci., Part A: Polym. Chem. 2018; 56: 1346
- 49 Wagner S, Zapata C, Wan W, Gawlitza K, Weber M, Rurack K. Langmuir 2018; 34: 6963
- 50 Sorensen CC, Bhat V, Bello AY, Leibfarth FA. ACS Catal. 2023; 13: 12163
- 51 Sorensen CC, Bello AY, Leibfarth FA. ACS Macro Lett. 2024; 13: 614
- 52 Teator AJ, Leibfarth FA. Science 2019; 363: 1439
- 53 Lai A, Hern ZC, Diaconescu PL. ChemCatChem 2019; 11: 4210
- 54 Thomson RK, Scott BL, Morris DE, Kiplinger JL. Compt. Rend. Chim. 2010; 13: 790
- 55 Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications, 2nd ed. 2000
- 56 Baker RJ, Walshe A. Chem. Commun. 2012; 48: 985
- 57 Huang Y.-J, Zhang X.-H, Hua Z.-J, Chen S.-L, Qi G.-R. Macromol. Chem. Phys. 2010; 211: 1229
- 58 Rodriguez-Delgado A, Chen EY. X. Inorg. Chim. Acta 2004; 357: 3911
- 59 Braune W, Okuda J. Angew. Chem. Int. Ed. 2003; 42: 64
- 60 Childers MI, Longo JM, Van Zee NJ, LaPointe AM, Coates GW. Chem. Rev. 2014; 114: 8129
- 61 Xu X, Luo G, Mehmood A, Zhao Y, Zhou G, Hou Z, Luo Y. Organometallics 2018; 37: 4599
- 62 Chisholm MH, Navarro-Llobet D, Simonsick WJ. Macromolecules 2001; 34: 8851
- 63 Pangborn AB, Giardello MA, Grubbs RH, Rosen RK, Timmers FJ. Organometallics 1996; 15: 1518
- 64 Matsuo J, Aoki K, Sanda F, Endo T. Macromolecules 1998; 31: 4432