RSS-Feed abonnieren

DOI: 10.1055/a-2512-8928
Application of Network Pharmacology in the Treatment of Neurodegenerative Diseases with Traditional Chinese Medicine
The authors are thankful for the support provided by the Natural Science Foundation of Hubei Province (Grant Nos. 2023AFB677, 2024AFB578) and the Intramural Research Program of Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology (Grant Nos. 2023LYYYSZRP0001,2023LYYYGZRP0003). We confirm that the funding sources had no role in the study design, data collection, analysis, interpretation, or manuscript preparation.
Abstract
In recent years, the incidence of neurodegenerative diseases, including Alzheimerʼs disease, Parkinsonʼs disease, Huntingtonʼs disease, and amyotrophic lateral sclerosis, has exhibited a steadily rising trend, which has posed a major challenge to the global public health. Traditional Chinese medicine, with its multicomponent and multitarget characteristics, offers a promising approach to treating neurodegenerative diseases. However, comprehensively elucidating the complex mechanisms underlying traditional Chinese medicine formulations remains challenging. As an emerging systems biology method, network pharmacology has provided a vital tool for revealing the multitarget mechanisms of traditional Chinese medicine through high-throughput technologies, molecular docking, and network analysis. This paper reviews the advancements in the application of network pharmacology in treating neurodegenerative diseases using traditional Chinese medicine, analyzes the current status of relevant databases and technological methods, discusses the limitations, and proposes future directions to promote the modernization of traditional Chinese medicine and the development of precision medicine.
Keywords
neurodegenerative diseases - traditional Chinese medicine - network pharmacology - therapeutic targetsPublikationsverlauf
Eingereicht: 20. Oktober 2024
Angenommen nach Revision: 06. Januar 2025
Accepted Manuscript online:
08. Januar 2025
Artikel online veröffentlicht:
18. Februar 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008; 4: 682-690
- 2 Liu F, Bai Y, Wu X, Wan Y, Luo S, Zhang L, Li T, Tang H, Tang X, Chen R, Chen Q, Xie Y, Guo P. Network pharmacology combined with experimental validation reveals the mechanism of action of cangerzisan on allergic rhinitis. J Ethnopharmacol 2024; 335: 118611
- 3 Zhong Y, Wen W, Luo Z, Cheng N. A multi-component, multi-target, and multi-pathway prediction method for Chinese medicine based on the combination of mass spectrometry analysis and network analysis: An example using Weifuchun. J Chromatogr A 2024; 1731: 465164
- 4 Zhou ZD, Kihara AH. Neurodegenerative diseases: Molecular mechanisms and therapies. Int J Mol Sci 2023; 24: 13721
- 5 Ricci C. Neurodegenerative disease: From molecular basis to therapy. Int J Mol Sci 2024; 25: 967
- 6 Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre A, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ. Solving neurodegeneration: Common mechanisms and strategies for new treatments. Mol Neurodegener 2022; 17: 23
- 7 Buccellato FR, DʼAnca M, Serpente M, Arighi A, Galimberti D. The role of glymphatic system in Alzheimerʼs and Parkinsonʼs disease pathogenesis. Biomedicines 2022; 10: 2261
- 8 Singh K, Gupta JK, Kumar S, Soni U. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Bioactive Peptides. Curr Protein Pept Sci 2024; 25: 507-526
- 9 Iacobucci G. Donanemab leads to modest slowing of Alzheimerʼs progression, study finds. BMJ 2023; 382: 1659
- 10 Mahboob A, Ali H, Alnaimi A, Yousef M, Rob M, Al-Muhannadi NA, Senevirathne DKL, Chaari A. Immunotherapy for Parkinsonʼs disease and Alzheimerʼs disease: A promising disease-modifying therapy. Cells 2024; 13: 1527
- 11 Mitchell CL, Kurouski D. Novel strategies in Parkinsonʼs disease treatment: A review. Front Mol Neurosci 2024; 17: 1431079
- 12 Shi F, He Y, Chen Y, Yin X, Sha X, Wang Y. Comparative analysis of multiple neurodegenerative diseases based on advanced epigenetic aging brain. Front Genet 2021; 12: 657636
- 13 GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022; 7: e105-e125
- 14 Ren B, Cheng F, Wang X, Wan Y, Ji W, Du X, Zhang S, Liu S, Ma C, Xiong Y, Hao G, Wang Q. Possible mechanisms underlying treatment of Alzheimerʼs disease with Traditional Chinese Medicine: Active components, potential targets and synthetic pathways of Bulao Elixir. J Tradit Chin Med 2020; 40: 484-496
- 15 Krawczuk D, Kulczynska-Przybik A, Mroczko B. Clinical application of blood biomarkers in neurodegenerative diseases-present and future perspectives. Int J Mol Sci 2024; 25: 8132
- 16 Wang Y, Zheng L. Protocatechuic acid, the main effective monomer in Wuqi Powder, can inhibit gastric ulcers induced by acetic acid and Helicobacter pylori . Am J Transl Res 2023; 15: 151-164
- 17 Huang L, Wang Q, Duan Q, Shi W, Li D, Chen W, Wang X, Wang H, Chen M, Kuang H, Zhang Y, Zheng M, Li X, He Z, Wen C. TCMSSD: A comprehensive database focused on syndrome standardization. Phytomedicine 2024; 128: 155486
- 18 Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6: 13
- 19 Fan M, Jin C, Li D, Deng Y, Yao L, Chen Y, Ma YL, Wang T. Multi-level advances in databases related to systems pharmacology in traditional Chinese medicine: A 60-year review. Front Pharmacol 2023; 14: 1289901
- 20 Xu HY, Zhang YQ, Liu ZM, Chen T, Lv CY, Tang SH, Zhang XB, Zhang W, Li ZY, Zhou RR, Yang HJ, Wang XJ, Huang LQ. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res 2019; 47: D976-D982
- 21 Zhang S, Zhang J, Wei D, An H, Liu W, Lai Y, Yang T, Shao W, Huang Y, Wang L, Dou F, Peng D, Zhang Z. Dengzhan Shengmai capsules and their active component scutellarin prevent cognitive decline in APP/PS1 mice by accelerating Abeta aggregation and reducing oligomers formation. Biomed Pharmacother 2020; 121: 109682
- 22 Chen T, Lei Y, Li M, Liu X, Zhang L, Cai F, Gong X, Zhang R. Network pharmacology to unveil the mechanism of suanzaoren decoction in the treatment of Alzheimerʼs with diabetes. Hereditas 2024; 161: 2
- 23 Du Y, Guo J, Zhou Y, Yan S, Xu B, Wang Y, Lu D, Ma Z, Chen Q, Tang Q, Zhang W, Zhu J, Huang Y, Yang C. Revealing the mechanisms of Byu dMar 25 in the treatment of Alzheimerʼs disease through network pharmacology, molecular docking, and in vivo experiment. ACS Omega 2023; 8: 25066-25080
- 24 Li SQ, Min DY, Jiang JW, Li XY, Yang XN, Gu WB, Jiang JH, Chen LH, Nan H, Chen ZY. Network pharmacology-based exploration of molecular mechanisms underlying therapeutic effects of Jianpi Huatan Quyu recipe on chronic heart failure with spleen Qi deficiency syndrome. World J Cardiol 2024; 16: 422-435
- 25 Wang F, Liu Y, Li Y, Yang X, Zhao J, Yang B, Tang D, Zhang C, He Z, Ming D, Zhu X. Combining network pharmacology and experimental verification to ascertain the mechanism of action of Asparagus officinalis against the brain damage caused by fluorosis. Environ Toxicol 2024; 1: 1-15
- 26 Kuhn M, Szklarczyk D, Franceschini A, Campillos M, von Mering C, Jensen LJ, Beyer A, Bork P. STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res 2010; 38: D552-556
- 27 Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 2016; 44: D380-D384
- 28 Shi YY, Chen ZQ, Huang LX, Gong YL, Shi L. A network pharmacology approach to reveal the key ingredients in Scrophulariae Radix (SR) and their effects against Alzheimerʼs disease. Heliyon 2024; 10: e24785
- 29 Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, Jyoti Kumar V, Mishra AP, Sharifi-Rad J. Cancer and diabetes: The interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 2021; 21: 499
- 30 Wu C, Huang ZH, Meng ZQ, Fan XT, Lu S, Tan YY, You LM, Huang JQ, Stalin A, Ye PZ, Wu ZS, Zhang JY, Liu XK, Zhou W, Zhang XM, Wu JR. A network pharmacology approach to reveal the pharmacological targets and biological mechanism of compound kushen injection for treating pancreatic cancer based on WGCNA and in vitro experiment validation. Chin Med 2021; 16: 121
- 31 Gu LL, Lu JQ, Li Q, Wu NZ, Zhang LX, Li HX, Xing WM, Zhang XY. A network-based analysis of key pharmacological pathways of Andrographis paniculata acting on Alzheimerʼs disease and experimental validation. J Ethnopharmacol 2020; 251: 112488
- 32 Hampel H, Vergallo A, Caraci F, Cuello AC, Lemercier P, Vellas B, Giudici KV, Baldacci F, Hänisch B, Haberkamp M, Broich K, Nisticò R, Emanuele E, Llavero F, Zugaza JL, Lucía A, Giacobini E, Lista S. Alzheimer Precision Medicine Initiative. Future avenues for Alzheimerʼs disease detection and therapy: Liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery. Neuropharmacology 2021; 185: 108081
- 33 Recabarren D, Alarcón M. Gene networks in neurodegenerative disorders. Life Sci 2017; 183: 83-97
- 34 Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M, Gordillo-Marañón M, Hunter F, Junco L, Mugumbate G, Rodriguez-Lopez M, Atkinson F, Bosc N, Radoux C, Segura-Cabrera A, Hersey A, Leach AR. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res 2019; 47: D930-D940
- 35 Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP. The ChEMBL bioactivity database: An update. Nucleic Acids Res 2014; 42: D1083-D1090
- 36 Iqbal D, Rehman MT, Bin Dukhyil A, Rizvi S, Al Ajmi MF, Alshehri BM, Banawas S, Khan MS, Alturaiki W, Alsaweed M. High-throughput screening and molecular dynamics simulation of natural product-like compounds against Alzheimerʼs disease through multitarget approach. Pharmaceuticals (Basel) 2021; 14: 937
- 37 Wang Q, Pang Y, Yang H, Zhang X, Nie W, Zhou J, Chen R. Investigating the mechanism of Fuling-Banxia-Dafupi in the treatment of diabetic kidney disease using network pharmacology and molecular docking. Nat Prod Res 2024; 1-6
- 38 Zhang Z, Gao J, Wang J, Mi Z, Li H, Dai Z, Pan Y, Dong J, Chen S, Lu S, Tan X, Chen H. Mechanism of Zhishi Xiebai Guizhi decoction to treat atherosclerosis: Insights into experiments, network pharmacology and molecular docking. J Ethnopharmacol 2024; 333: 118466
- 39 Xiao G, Yang M, Zeng Z, Tang R, Jiang J, Wu G, Xie C, Jia D, Bi X. Investigation into the anti-inflammatory mechanism of Pothos chinensis (Raf.) Merr. By regulating TLR4/MyD88/NF-kappaB pathway: Integrated network pharmacology, serum pharmacochemistry, and metabolomics. J Ethnopharmacol 2024; 334: 118520
- 40 Pariary R, Shome G, Dutta T, Roy A, Misra AK, Jana K, Rastogi S, Senapati D, Mandal AK, Bhunia A. Enhancing amyloid beta inhibition and disintegration by natural compounds: A study utilizing spectroscopy, microscopy and cell biology. Biophys Chem 2024; 313: 107291
- 41 Brookmeyer R, Abdalla N, Kawas CH, Corrada MM. Forecasting the prevalence of preclinical and clinical Alzheimerʼs disease in the United States. Alzheimers Dement 2018; 14: 121-129
- 42 Guo Y, Fan Z, Zhao S, Yu W, Hou X, Nie S, Xu S, Zhao C, Han J, Liu X. Brain-targeted lycopene-loaded microemulsion modulates neuroinflammation, oxidative stress, apoptosis and synaptic plasticity in beta-amyloid-induced Alzheimerʼs disease mice. Neurol Res 2023; 45: 753-764
- 43 De Strooper B, Karran E. The cellular phase of Alzheimerʼs disease. Cell 2016; 164: 603-615
- 44 Cummings J, Lee G, Zhong K, Fonseca J, Taghva K. Alzheimerʼs disease drug development pipeline: 2021. Alzheimers Dement (N Y) 2021; 7: e12179
- 45 Wang Y, Jiang J, Chen S, Chen Q, Yan X, Shen X. Elucidating the therapeutic mechanism of Hengqing II decoction in Alzheimerʼs disease using network pharmacology and molecular docking techniques. Fitoterapia 2024; 174: 105860
- 46 Zhang M, Zheng H, He J, Zhang M. Network pharmacology and in vivo studies reveal the neuroprotective effects of paeoniflorin on Alzheimerʼs disease. Heliyon 2023; 9: e21800
- 47 Xu W, Ren B, Zhang Z, Chen C, Xu T, Liu S, Ma C, Wang X, Wang Q, Cheng F. Network pharmacology analysis reveals neuroprotective effects of the Qin-Zhi-Zhu-Dan formula in Alzheimerʼs disease. Front Neurosci 2022; 16: 943400
- 48 Qiu ZK, Zhou BX, Pang J, Zeng WQ, Wu HB, Yang F. The network pharmacology study and molecular docking to investigate the potential mechanism of Acoritataninowii Rhizoma against Alzheimerʼs disease. Metab Brain Dis 2023; 38: 1937-1962
- 49 Soleimani Zakeri NS, Pashazadeh S, MotieGhader H. Drug repurposing for Alzheimerʼs disease based on protein-protein interaction network. Biomed Res Int 2021; 2021: 1280237
- 50 Siderowf A. Parkinsonʼs disease: Clinical features, epidemiology and genetics. Neurol Clin 2001; 19: 565-578 vi
- 51 Tapias V, Hu X, Luk KC, Sanders LH, Lee VM, Greenamyre JT. Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production. Cell Mol Life Sci 2017; 74: 2851-2874
- 52 Becerra-Calixto A, Mukherjee A, Ramirez S, Sepulveda S, Sinha T, Al-Lahham R, De Gregorio N, Gherardelli C, Soto C. Lewy body-like pathology and loss of dopaminergic neurons in midbrain organoids derived from familial Parkinsonʼs disease patient. Cells 2023; 12: 625
- 53 Henriques A, Rouviere L, Giorla E, Farrugia C, El Waly B, Poindron P, Callizot N. Alpha-synuclein: The spark that flames dopaminergic neurons, in vitro and in vivo evidence. Int J Mol Sci 2022; 23: 9864
- 54 Kwon DK, Kwatra M, Wang J, Ko HS. Levodopa-induced dyskinesia in Parkinsonʼs disease: Pathogenesis and emerging treatment strategies. Cells 2022; 11: 3736
- 55 Liu Z, Zhao J, Yang S, Zhang Y, Song L, Wu N, Liu Z. Network pharmacology and absolute bacterial quantification-combined approach to explore the mechanism of Tianqi Pingchan granule against 6-OHDA-induced Parkinsonʼs disease in rats. Front Nutr 2022; 9: 836500
- 56 Wu Y, Bai Y, Lu Y, Zhang ZN, Zhao Y, Huang SR, Tang LL, Liang Y, Hu Y, Xu CC. Transcriptome sequencing and network pharmacology-based approach to reveal the effect and mechanism of Ji Chuan Jian against Parkinsonʼs disease. BMC Complement Med Ther 2023; 23: 182
- 57 Zhang W, Chen JY, Liu HQ. Network pharmacology and molecular docking-based prediction of the molecular targets and signaling pathways of ginseng in the treatment of Parkinsonʼs disease. Nat Prod Commun 2022; 17: 1-9
- 58 Wu YH, Liu H, Wang YL, Sheng HD, Chen ZL, Xun DJ, Wu HM, Xiao S, Bi Y, Wang Y. DiHuangYin decoction protects dopaminergic neurons in a Parkinsonʼs disease model by alleviating peripheral inflammation. Phytomedicine 2022; 105: 154357
- 59 Lin DT, Zeng YD, Tang DY, Cai YM. Study on the mechanism of Liuwei Dihuang pills in treating Parkinsonʼs disease based on network pharmacology. Biomed Res Int 2021; 2021: 4490081
- 60 Dhingra H, Gaidhane SA. Huntingtonʼs disease: Understanding its novel drugs and treatments. Cureus 2023; 15: e47526
- 61 Garcia-Gonzalez X, Cubo E, Simon-Vicente L, Mariscal N, Alcaraz R, Aguado L, Rivadeneyra-Posadas J, Sanz-Solas A, Saiz-Rodriguez M. Pharmacogenetics in the treatment of Huntingtonʼs disease: Review and future perspectives. J Pers Med 2023; 13: 385
- 62 Csehi R, Molnar V, Fedor M, Zsumbera V, Palasti A, Acsai K, Grosz Z, Nemeth G, Molnar MJ. The improvement of motor symptoms in Huntingtonʼs disease during cariprazine treatment. Orphanet J Rare Dis 2023; 18: 375
- 63 Kalathur RKR, Pedro Pinto J, Sahoo B, Chaurasia G, Futschik ME. HDNetDB: A molecular interaction database for network-oriented investigations into Huntingtonʼs disease. Sci Rep 2017; 7: 5216
- 64 Zhang D, Zhang Y, Gao Y, Chai X, Pi R, Chan G, Hu Y. Translating traditional herbal formulas into modern drugs: A network-based analysis of Xiaoyao decoction. Chin Med 2020; 15: 25
- 65 Patil N, Dhariwal R, Mohammed A, Wei LS, Jain M. Network pharmacology-based approach to elucidate the pharmacologic mechanisms of natural compounds from Dictyostelium discoideum for Alzheimerʼs disease treatment. Heliyon 2024; 10: e28852
- 66 Qiu M, Zhang J, Wei W, Zhang Y, Li M, Bai Y, Wang H, Meng Q, Guo DA. Integrated UPLC/Q-TOF-MS/MS analysis and network pharmacology to reveal the neuroprotective mechanisms and potential pharmacological ingredients of Aurantii Fructus Immaturus and Aurantii Fructus . Pharmaceuticals (Basel) 2024; 17: 239
- 67 Virdee JK, Saro G, Fouillet A, Findlay J, Ferreira F, Eversden S, OʼNeill MJ, Wolak J, Ursu D. A high-throughput model for investigating neuronal function and synaptic transmission in cultured neuronal networks. Sci Rep 2017; 7: 14498
- 68 Gao J, Sterling E, Hankin R, Sikal A, Yao Y. Therapeutics targeting skeletal muscle in amyotrophic lateral sclerosis. Biomolecules 2024; 14: 878
- 69 Lu L, Deng Y, Xu R. Current potential therapeutics of amyotrophic lateral sclerosis. Front Neurol 2024; 15: 1402962
- 70 Genge A, Wainwright S, Vande Velde C. Amyotrophic lateral sclerosis: Exploring pathophysiology in the context of treatment. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25: 225-236
- 71 Neupane P, Thada PK, Singh P, Faisal AR, Rai N, Poudel P, Waleed MS, Quinonez J, Ruxmohan S, Jain E. Investigating edaravone use for management of Amyotrophic Lateral Sclerosis (ALS): A narrative review. Cureus 2023; 15: e33746
- 72 Li R, Han X, Wang Q, Wang C, Jing W, Zhang H, Wang J, Pan W. Network pharmacology analysis and clinical efficacy of the traditional Chinese medicine Bu-Shen-Jian-Pi. Part 3: Alleviation of hypoxia, muscle-wasting, and modulation of redox functions in amyotrophic lateral sclerosis. Int J Clin Pharmacol Ther 2024; 62: 169-177
- 73 Lin J, Wang J, Wang C, Shan Y, Jing W, Fei Z, Pan W. Network pharmacology analysis and clinical efficacy of the traditional Chinese medicine Bu-Shen-Jian-Pi. Part 1: Biogenic components and identification of targets and signaling pathways in amyotrophic lateral sclerosis patients. Int J Clin Pharmacol Ther 2024; 62: 155-161
- 74 Tang X, Zhan Y, Yang B, Du B, Huang J. Exploring the mechanism of Semen Strychni in treating amyotrophic lateral sclerosis based on network pharmacology. Medicine (Baltimore) 2023; 102: e35101
- 75 Li X, Tian Y, Wu H, Wang T. Network pharmacology and molecular docking to unveil the mechanism of Shudihuang against Amyotrophic Lateral Sclerosis. Curr Pharm Des 2023; 29: 1535-1545
- 76 Liu X, Xiao X, Han X, Yao L, Lan W. A new therapeutic trend: Natural medicine for ameliorating ischemic stroke via PI3K/Akt signaling pathway. Molecules 2022; 27: 7963
- 77 Noor F, Tahir Ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals (Basel) 2022; 15: 572
- 78 Carrillo-Mora P, Landa-Solis C, Valle-Garcia D, Luna-Angulo A, Aviles-Arnaut H, Robles-Banuelos B, Sanchez-Chapul L, Rangel-Lopez E. Kynurenines and inflammation: A remarkable axis for multiple sclerosis treatment. Pharmaceuticals (Basel) 2024; 17: 983
- 79 Lipphardt M, Wallbach M, Koziolek MJ. Plasma exchange or immunoadsorption in demyelinating diseases: A meta-analysis. J Clin Med 2020; 9: 1597
- 80 Mukhatayev Z, Dellacecca ER, Cosgrove C, Shivde R, Jaishankar D, Pontarolo-Maag K, Eby JM, Henning SW, Ostapchuk YO, Cedercreutz K, Issanov A, Mehrotra S, Overbeck A, Junghans RP, Leventhal JR, Le Poole IC. Antigen specificity enhances disease control by tregs in vitiligo. Front Immunol 2020; 11: 581433
- 81 Armer JM, Ballman KV, McCall L, Armer NC, Sun Y, Udmuangpia T, Hunt KK, Mittendorf EA, Byrd DR, Julian TB, Boughey JC. Lymphedema symptoms and limb measurement changes in breast cancer survivors treated with neoadjuvant chemotherapy and axillary dissection: results of American College of Surgeons Oncology Group (ACOSOG) Z1071 (Alliance) substudy. Support Care Cancer 2019; 27: 495-503
- 82 Noor F, Rehman A, Ashfaq UA, Saleem MH, Okla MK, Al-Hashimi A, AbdElgawad H, Aslam S. Integrating network pharmacology and molecular docking approaches to decipher the multi-target pharmacological mechanism of Abrus precatorius L. acting on diabetes. Pharmaceuticals (Basel) 2022; 15: 414