Synthesis 2025; 57(09): 1599-1606
DOI: 10.1055/a-2519-9499
paper

Non-aerobic and One-Pot Synthesis of Carbazoles from Cyclohex­anones and Arylhydrazines

Keigo Miki
,
Ryosuke Matsubara
,
Masahiko Hayashi
This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.


Abstract

The reaction of cyclohexanones with phenylhydrazines proceeded under an ethylene atmosphere in the presence of a catalytic amount of Pd/C and an equimolar amount of p-toluenesulfonic acid monohydrate to afford a variety of substituted carbazoles in good to high yields. The present reaction was carried out under completely non-aerobic conditions, which is in contrast with the previously reported aerobic system. This protocol was also applied to the synthesis of symmetrical carbazoles using hydrazine monohydrate in place of phenylhydrazines. The reaction would proceed in a manner similar to the Fischer indole synthesis, involving a [3,3]-sigmatropic rearrangement and advancing with 1,2,3,4-tetrahydrocarbazole as an intermediate.

Supporting Information



Publikationsverlauf

Eingereicht: 29. November 2024

Angenommen nach Revision: 18. Januar 2025

Accepted Manuscript online:
20. Januar 2025

Artikel online veröffentlicht:
04. März 2025

© 2025. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

    • 1a Chakraborty DP. In The Alkaloids: Chemistry and Pharmacology, Vol. 44. Cordell GA. Academic Press; New York: 1993: 257-364
    • 1b Joule JA, Mills K. Heterocyclic Chemistry, 4th ed. Blackwell Science; Oxford (U.K.): 2000
    • 1c Knölker H.-J, Reddy KR. The Alkaloids: Chemistry and Biology, Vol. 65. Cordell GA. Academic Press; Amsterdam: 2008: 1-430
  • 3 Organic Light Emitting Devices: Synthesis, Properties, and Applications. Müllen K, Scherf U. Wiley-VCH; Weinheim: 2006
    • 4a Thomas KR. J, Lin JT, Tao Y.-T, Ko C.-W. J. Am. Chem. Soc. 2001; 123: 9404
    • 4b Diaz JL, Dobarro A, Villacampa B, Velasco D. Chem. Mater. 2001; 13: 2528
    • 4c Chen C.-T. Chem. Mater. 2004; 16: 4389
    • 4d Brunner K, van Dijken A, Bärner H, Bastiaansen JJ. A. M, Kiggen NM. M, Langeveld BM. W. J. Am. Chem. Soc. 2004; 126: 6035
    • 4e Yeh S.-J, Wu M.-F, Chen C.-T, Song Y.-H, Chi Y, Ho M.-H, Hsu S.-F, Chen CH. Adv. Mater. 2005; 17: 285
    • 4f Tsai M.-H, Hong Y.-H, Chang C.-H, Su H.-C, Wu C.-C, Matoliukstyte A, Simokaiteiene S, Grigalevicius S, Grazulevicius JV, Hsu C.-P. Adv. Mater. 2007; 19: 862
    • 5a Matsubara R, Shin Y.-S, Shimada T, Hayashi M. Asian J. Org. Chem. 2014; 3: 1054
    • 5b Matsubara R, Shimada T, Kobori Y, Yabuta T, Osakai T, Hayashi M. Chem. Asian J. 2016; 11: 2006
    • 5c Matsubara R, Yabuta T, Md Idros U, Hayashi M, Ema F, Kobori Y, Sakata K. J. Org. Chem. 2018; 83: 9381
    • 5d Matsubara R, Kuang H, Yabuta T, Xie W, Hayashi M, Sakuda E. J. Photochem. Photobiol. 2023; 15: 100176
    • 5e Matsubara R, Md Idros U, Yabuta T, Ma H, Hayashi M, Eda K. ChemPhotoChem. 2018; 2: 1012
    • 5f Yabuta T, Hayashi M, Matsubara R. J. Org. Chem. 2021; 86: 2545
    • 5g Xie W, Xu J, Md Idros U, Katsuhira J, Fuki M, Hayashi M, Yamanaka M, Kobori Y, Matsubara R. Nat. Chem. 2023; 15: 794
    • 6a Cadogan JI. G, Cameron-Wood M, Mackie RK, Searle RJ. G. J. Chem. Soc. 1965; 4831

    • From aromatic azides, see:
    • 6b Iddon B, Meth-Cohn O, Scriven EF. V, Suschitzky H, Gallagher PT. Angew. Chem., Int. Ed. Engl. 1979; 18: 900
    • 6c Söderberg BC. G. Curr. Org. Chem. 2000; 4: 727
  • 7 Åkermark B, Eberson L, Jonson E, Pettersson E. J. Org. Chem. 1975; 40: 1365
  • 9 Xiao F, Liao Y, Wu Y, Deng G.-J. Green Chem. 2012; 14: 3277
  • 10 Karki M, Araujo HC, Magolan J. Synlett 2013; 24: 1675
  • 12 Alekseyev RS, Kurkin AV, Yurovskaya MA. Chem. Heterocycl. Compd. 2011; 47: 584
  • 13 When we employed the reaction of cyclohexanone (1a) with phenylhydrazine (2a) in the presence of 1-octene (2 equiv) instead of ethylene gas, carbazole (3a) was obtained in 93% yield. The reactions for the synthesis of indoles using 1-octene as a hydrogen acceptor, instead of ethylene, were recently reported by our group. See: Dong X, Matsubara R, Hayashi M. Synthesis 2025; 57: 800
  • 14 Guerra WD, Rossi RA, Pierini AB, Barolo SM. J. Org. Chem. 2015; 80: 928
  • 15 Takamatsu K, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 2892
  • 16 Ullah E, McNulty J, Robertson A. Eur. J. Org. Chem. 2012; 2127
  • 17 Budén ME, Vaillard VA, Martin SE, Rossi RA. J. Org. Chem. 2009; 74: 4490
  • 18 King FE, King TJ. J. Chem. Soc. 1945; 824
  • 19 Bedford RB, Betham M. J. Org. Chem. 2006; 71: 9403
  • 20 Ackermann L, Althammer A. Angew. Chem. Int. Ed. 2007; 46: 1627
  • 21 Yang L, Zhang Y, Zou X, Lu H, Li G. Green Chem. 2018; 20: 1362
  • 22 Rasheed S, Rao DN, Reddy KR, Aravinda S, Vishwakarma RA, Das P. RSC Adv. 2014; 4: 4960
  • 23 Plant SG. P, Williams SB. C. J. Chem. Soc. 1934; 1142
  • 24 Humne V, Dangat Y, Vanka K, Lokhande P. Org. Biomol. Chem. 2014; 12: 4832
  • 25 Chen F, Liu N, Ji E, Dai B. RSC Adv. 2015; 5: 5151
  • 26 Mayer L, Kohlbecher R, Müller TJ. J. Chem. Eur. J. 2020; 26: 15130
  • 27 Inoue H, Hara T, Ishisone T, Suzuki K, Hamada T, Kanamoto M. WO Patent WO2016012910, 2016
  • 28 Kuroki M, Tsunashima Y. J. Heterocycl. Chem. 1981; 18: 709
  • 29 Wentrup C, Gaugaz M. Helv. Chim. Acta 1971; 54: 2108
  • 30 Gruzdev MS, Chervonova UV, Venediktov EA, Rozhkova EP, Kolker AM, Mazaev EA, Dudina NA, Domracheva NE. Russ. J. Gen. Chem. 2015; 85: 1431
  • 31 Inoue M, Suzuki T, Nakada M. J. Am. Chem. Soc. 2003; 125: 1140
  • 32 Hodgson HH, Habeshaw J. J. Chem. Soc. 1947; 1573