RSS-Feed abonnieren
DOI: 10.1055/a-2522-0473
Energy-Demanding Redox Transformations via Electrophotocatalysis
We are grateful for financial support from the National Key Research and Development Program of China (2023YFA1507200, 2022YFA1502900, 2022YFA0911900), the National Natural Science Foundation of China (22193013, 21933007, 22088102) and the New Cornerstone Science Foundation.

Abstract
Electrocatalysis and photocatalysis are two widely recognized approaches to organic synthesis. Over the past decades, these strategies, leveraging distinct energy sources (electricity or light), have demonstrated remarkable capabilities in facilitating chemical transformations. Integrating the broad reactivity of photochemistry with the high chemoselectivity of electrochemistry, the recent advent of electrophotocatalysis (also referred to as photoelectrocatalysis) has garnered increasing attention. This innovative approach is poised to revolutionize organic synthesis by capitalizing on their synergistic benefits. This short review aims to encapsulate the recent advancements in electrophotocatalytic energy-demanding redox transformations. These include, but are not limited to, C–H functionalization, C–X functionalization, and C=X functionalization, highlighting the potential of electrophotocatalysis to enhance the efficiency and selectivity of organic synthesis processes.
1 Introduction
2 Electrophotocatalytic C–H Functionalization
3 Electrophotocatalytic C–X Functionalization
4 Electrophotocatalytic C=X Functionalization
5 Conclusion
Key word
photoelectrocatalysis - electrophotocatalysis - functionalization - C–H bond - C–X bond - C=X bondPublikationsverlauf
Eingereicht: 13. Dezember 2024
Angenommen nach Revision: 21. Januar 2025
Accepted Manuscript online:
21. Januar 2025
Artikel online veröffentlicht:
10. März 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Murray PR. D, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Chem. Rev. 2022; 122: 2017
- 1b Tay NE. S, Lehnherr D, Rovis T. Chem. Rev. 2022; 122: 2487
- 2a Großkopf J, Kratz T, Rigotti T, Bach T. Chem. Rev. 2022; 122: 1626
- 2b Candish L, Collins KD, Cook GC, Douglas JJ, Gomez-Suarez A, Jolit A, Keess S. Chem. Rev. 2022; 122: 2907
- 3 Barham JP, Konig B. Angew. Chem. Int. Ed. 2020; 59: 11732
- 4 Wu S, Kaur J, Karl TA, Tian X, Barham JP. Angew. Chem. Int. Ed. 2022; 61: e202107811
- 5a Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
- 5b Harwood SJ, Palkowitz MD, Gannett CN, Perez P, Yao Z, Sun L, Abruña HD, Anderson SL, Baran PS. Science 2022; 375: 745
- 5c Sun G.-Q, Yu P, Zhang W, Zhang W, Wang Y, Liao L.-L, Zhang Z, Li L, Lu Z, Yu D.-G, Lin S. Nature 2023; 615: 67
- 6a Ghosh I, Ghosh T, Bardagi JI, König B. Science 2014; 346: 725
- 6b MacKenzie IA, Wang L, Onuska NP. R, Williams OF, Begam K, Moran AM, Dunietz BD, Nicewicz DA. Nature 2020; 580: 76
- 6c Glaser F, Kerzig C, Wenger OS. Angew. Chem. Int. Ed. 2020; 59: 10266
- 7a Targos K, Williams OP, Wickens ZK. J. Am. Chem. Soc. 2021; 143: 4125
- 7b Cole JP, Chen D.-F, Kudisch M, Pearson RM, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2020; 142: 13573
- 8 Huang H, Steiniger KA, Lambert TH. J. Am. Chem. Soc. 2022; 144: 12567
- 9 Yan H, Hou Z.-W, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 4592
- 10 Huang H, Strater ZM, Rauch M, Shee J, Sisto TJ, Nuckolls C, Lambert TH. Angew. Chem. Int. Ed. 2019; 58: 13318
- 11 Zhang L, Liardet L, Luo J, Ren D, Grätzel M, Hu X. Nat. Catal. 2019; 2: 366
- 12 Lai X.-L, Shu X.-M, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2020; 59: 10626
- 13 Qiu Y, Scheremetjew A, Finger LH, Ackermann L. Chem. Eur. J. 2020; 26: 3241
- 14 Niu L, Jiang C, Liang Y, Liu D, Bu F, Shi R, Chen H, Chowdhury AD, Lei A. J. Am. Chem. Soc. 2020; 142: 17693
- 15 Shen T, Lambert TH. J. Am. Chem. Soc. 2021; 143: 8597
- 16 Shen T, Lambert TH. Science 2021; 371: 620
- 17 Cai C.-Y, Lai X.-L, Wang Y, Hu H.-H, Song J, Yang Y, Wang C, Xu H.-C. Nat. Catal. 2022; 5: 943
- 18 Qi J, Xu J, Ang HT, Wang B, Gupta NK, Dubbaka SR, O’Neill P, Mao X, Lum Y, Wu J. J. Am. Chem. Soc. 2023; 145: 24965
- 19 Shen T, Li Y.-L, Ye K.-Y, Lambert TH. Nature 2023; 614: 275
- 20 Zhang J, Yang Z, Liu C, Wan H, Hao Z, Ji X, Wang P, Yi H, Lei A. Nat. Commun. 2024; 15: 6954
- 21 Cowper NG. W, Chernowsky CP, Williams OP, Wickens ZK. J. Am. Chem. Soc. 2020; 142: 2093
- 22 Rieth AJ, Gonzalez MI, Kudisch B, Nava M, Nocera DG. J. Am. Chem. Soc. 2021; 143: 14352
- 23 Kim H, Kim H, Lambert TH, Lin S. J. Am. Chem. Soc. 2020; 142: 2087
- 24 Chen Y.-J, Lei T, Hu H.-L, Wu H.-L, Zhou S, Li X.-B, Chen B, Tung C.-H, Wu L.-Z. Matter 2021; 4: 2354
- 25 Tian X, Karl TA, Reiter S, Yakubov S, de Vivie-Riedle R, König B, Barham JP. Angew. Chem. Int. Ed. 2021; 60: 20817
- 26 Chernowsky CP, Chmiel AF, Wickens ZK. Angew. Chem. Int. Ed. 2021; 60: 21418
- 27 Chen Y.-J, Deng W.-H, Guo J.-D, Ci R.-N, Zhou C, Chen B, Li X.-B, Guo X.-N, Liao R.-Z, Tung C.-H, Wu L.-Z. J. Am. Chem. Soc. 2022; 144: 17261
- 28 Yang Z, Yang D, Zhang J, Tan C, Li J, Wang S, Zhang H, Huang Z, Lei A. J. Am. Chem. Soc. 2022; 144: 13895
- 29 Lai X.-L, Chen M, Wang Y, Song J, Xu H.-C. J. Am. Chem. Soc. 2022; 144: 20201
- 30 Wang J, Li S, Yang C, Gao H, Zuo L, Guo Z, Yang P, Jiang Y, Li J, Wu L.-Z, Tang Z. Nat. Commun. 2024; 15: 6907
- 31 Zou L, Sun R, Tao Y, Wang X, Zheng X, Lu Q. Nat. Commun. 2024; 15: 5245
- 32 Huang H, Lambert TH. J. Am. Chem. Soc. 2021; 143: 7247
- 33 Huang H, Lambert TH. J. Am. Chem. Soc. 2022; 144: 18803
- 34 Lai X.-L, Xu H.-C. J. Am. Chem. Soc. 2023; 145: 18753
- 35 Xiong P, Ivlev SI, Meggers E. Nat. Catal. 2023; 6: 1186
- 36 Kang W.-J, Zhang Y, Li B, Guo H. Nat. Commun. 2024; 15: 655
- 37 Chen Y.-J, Wei D, Wang C, Meng S.-L, Chen B, Tung C.-H, Wu L.-Z. CCS Chem. 2025; in press
- 38 Kagan HB. Angew. Chem. Int. Ed. 2012; 51: 7376