Subscribe to RSS
DOI: 10.1055/a-2525-7349
Synthesis of Chlorophyll–Thiophene Conjugates through Friedel–Crafts Reaction
This work was partially supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 22H02203 in Scientific Research (B).

Abstract
Friedel–Crafts reactions of a chlorophyll-a derivative possessing a hydroxymethyl group at the 3-position with (benzo)thiophenes in the presence of p-toluenesulfonic acid gave 3-(benzo)thienylmethyl-chlorins regioselectively. The α-position of unsubstituted thiophene was more reactive toward the acid-assisted dehydration reaction than the β-position. Electron-donating substituents at the β-position in thiophene were acceptable for the production of the α-adducts, but electron-withdrawing substitution on the thiophene core proved ineffective. The electron-rich α,α′-dimethylthiophene could not be substituted at the β-position with the (chlorin-3-yl)methyl group. The reaction with benzothiophene exclusively afforded the β-substituted adduct. The reverse regioselectivity was consistent with the conventional electrophilic substitutions of (benzo)thiophenes. Under the aforementioned Friedel–Crafts reaction conditions, the α-methylation of benzothiophene led to the β-adduct as expected, whereas its β-methylation resulted in the successful preparation of the α-adduct. The fusion of a benzo moiety on thiophene largely affected the reactivity and regioselectivity toward the production of the chlorophyll–thiophene conjugates.
Key words
chlorin π-system - dehydration adduct - electrophilic substitution - heteroaromatic - methyl pyropheophorbide-a - regioselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2525-7349.
- Supporting Information
Publication History
Received: 26 December 2024
Accepted after revision: 27 January 2025
Accepted Manuscript online:
27 January 2025
Article published online:
10 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Thiophene and Its Derivatives, Part One. Gronowitz S. Wiley; New York: 1985
- 1b Thiophene and Its Derivatives, Part Two. Gronowitz S. Wiley; New York: 1986
- 1c Fukushima K, Yasukawa M, Muto N, Uemura H, Ishiwatari R. Org. Geochem. 1992; 18: 83
- 1d Thiophenes . Joule JA. Springer; Heidelberg: 2015
- 1e Barbarella G, Zangoli M, Di Maria F. Adv. Heterocycl. Chem. 2017; 123: 105
- 1f Nowicki J, Wójcik J, Muszyński M, Woszczyński P. Catal. Commun. 2019; 132: 105811
- 1g da Cruz RM. D, Mendonça-Junior FJ. B, de Mélo NB, Scotti L, de Araújo RS. A, de Almeida RN, de Moura RO. Pharmaceuticals 2021; 14: 692
- 1h Wu H, Lu X, Xu J, Zhang X, Li Z, Yang X, Ling Y. Molecules 2022; 27: 8700
- 1i Idrissi A, Fakir ZE, Atir R, Habsaoui A, Touhami ME, Bouzakraoui S. Mater. Chem. Phys. 2023; 293: 126851
- 1j Gorbunova IA, Timofeeva M, Gunina E, Sharavyeva YO, Parkhoma KY, Shipilovskikh DA, Shipilovskikh SA. Photonics Nanostructures: Fundam. Appl. 2024; 58: 101220
- 2a Björn LO, Papageorgiou GC, Blankenship RE. Govindjee, Photosynth. Res. 2009; 99: 85
- 2b Ryan AA, Senge MO. Photochem. Photobiol. Sci. 2015; 14: 638
- 2c Duan S, Zhou Q, Li A, Wang X.-F, Sasaki S, Tamiaki H. Solar RRL 2020; 4: 2000162
- 2d Bryant DA, Hunter CN, Warren MJ. J. Biol. Chem. 2020; 295: 6888
- 2e Govindjee, Stirbet A, Lindsey JS, Scheer H. Photosynth. Res. 2024; 160: 55
- 2f Tamiaki H, Kichishima S. Plant Cell Physiol. 2025; 66: 153
- 3a Gunderson VL, Wasielewski MR. Handbook Porphyr. Sci. 2012; 20: 45
- 3b Otsuki J. J. Mater. Chem. A 2018; 6: 6710
- 3c Kichishima S, Maeda H, Tamiaki H. J. Phys. Org. Chem. 2023; 36: e4546
- 4 Osuka A, Wada Y, Shinoda S. Tetrahedron 1996; 52: 4311
- 5a Kinoshita Y, Kitagawa Y, Tamiaki H. Chem. Eur. J. 2016; 22: 9996
- 5b Ishii T, Matsubara S, Tamiaki H. Chem. Commun. 2023; 59: 1967
- 6 Ohashi K, Kinoshita Y, Tamiaki H. Tetrahedron 2018; 74: 2703
- 7 Kim N.-R, Kim S, Kim JD, Huh DS, Shim YK, Choe SJ. Bull. Korean Chem. Soc. 2009; 30: 205
- 8a Helaja J, Tauber AY, Abel Y, Tkachenko NV, Lemmetyinen H, Kilpeläinen I, Hynninen PH. J. Chem. Soc., Perkin Trans. 1 1999; 2403
- 8b Holzwarth AR, Katterle M, Müller MG, Ma Y.-Z, Prokhorenko V. Pure Appl. Chem. 2001; 73: 469
- 8c Lee J.-C, Kim T.-Y, Kang SH, Shim YK. Bull. Korean Chem. Soc. 2001; 22: 257
- 8d Shinozaki Y, Uragami C, Hashimoto H, Tamiaki H. Chem. Eur. J. 2020; 26: 8897
- 9 Johnson DG, Niemczyk MP, Minsek DW, Wiederrecht GP, Svec WA, Gaines GL. III, Wasielewski MR. J. Am. Chem. Soc. 1993; 115: 5692
- 10a Tkachenko NV, Tauber AY, Hynninen PH, Sharonov AY, Lemmetyinen H. J. Phys. Chem. A. 1999; 103: 3657
- 10b Kichishima S, Funayama N, Tamiaki H. Dyes Pigm. 2024; 227: 112193
- 11a Numata M, Kinoshita D, Taniguchi N, Tamiaki H, Ohta A. Angew. Chem. Int. Ed. 2012; 51: 1844
- 11b Shinozaki Y, Richards G, Ogawa K, Yamano A, Ohara K, Yamaguchi K, Kawano S, Tanaka K, Araki Y, Wada T, Otsuki J. J. Am. Chem. Soc. 2013; 135: 5262
- 11c Liang B, Liu Y, Xu X, Jin Y, Qi C, Wang J. Chin. J. Org. Chem. 2013; 33: 2357
- 11d Yamamoto Y, Tamiaki H. Dyes Pigm. 2015; 118: 159
- 11e Shinozaki Y, Ohkubo K, Fukuzumi S, Sugawa K, Otsuki J. Chem. Eur. J. 2016; 22: 1165
- 11f Takarada Y, Hara N, Ogasawara S, Tamiaki H. J. Porphyr. Phthalocyanines 2023; 27: 1189
- 12 Wang J.-J, Wu X.-R, Wang L.-M, Han G.-F, Shim YK. Chin. J. Org. Chem. 2004; 24: 906
- 13 Kudo R, Hanayama H, Vedhanarayanan B, Tamiaki H, Hara N, Rogers SE, Hollamby MJ, Biplab M, Harano K, Yagai S. Org. Chem. Front. 2024; 11: 6304
- 14a Galindev O, Badraa N, Dalantai M, Sengee G.-I, Dorjnamjin D, Shim YK. Photochem. Photobiol. Sci. 2008; 7: 1273
- 14b Wang J.-J, Liu C, Wu J, Liu R.-R, Zhang P. J. Heterocycl. Chem. 2014; 51: 392
- 14c Kinoshita Y, Tamiaki H. J. Photochem. Photobiol. A: Chem. 2015; 313: 27
- 15 Wang J.-J, Wu X.-R, Han G.-F, Shim YK. Chin. J. Org. Chem. 2005; 25: 313
- 16a Wasielewski MR, Svec WA, Cope BT. J. Am. Chem. Soc. 1978; 100: 1961
- 16b Johnson DG, Svec WA, Wasielewski MR. Isr. J. Chem. 1988; 28: 193
- 16c Wasielewski MR, Johnson DG, Niemczyk MP, Gaines GL. III, O’Neil MP, Svec WA. J. Am. Chem. Soc. 1990; 112: 6482
- 16d Wiederrecht GP, Watanabe S, Wasielewski MR. Chem. Phys. 1993; 176: 601
- 16e Kosaka N, Tamiaki H. Eur. J. Org. Chem. 2004; 2325
- 16f Sasaki S, Tamiaki H. Tetrahedron Lett. 2006; 47: 4965
- 16g Kataoka Y, Shibata Y, Tamiaki H. Chem. Lett. 2010; 39: 953
- 16h Sasaki S, Mizutani K, Kunieda M, Tamiaki H. Tetrahedron 2011; 67: 6065
- 16i Belyaev ES, Kozhemyakin GL, Tyurin VS, Frolova VV, Lonin IS, Ponomarev GV, Buryak AK, Zamilatskov IA. Org. Biomol. Chem. 2022; 20: 1926
- 17a Wang J.-J, Shim YK, Jiang G.-J, Imafuku K. J. Heterocycl. Chem. 2003; 40: 1075
- 17b Wang J.-J, Lee K.-I, Kim M.-H, Shim YK. Bull. Korean Chem. Soc. 2004; 25: 1449
- 18 Tamiaki H, Amakawa M, Shimono Y, Tanikaga R, Holzwarth AR, Schaffner K. Photochem. Photobiol. 1996; 63: 92
- 19 Sakaguchi K, Tamiaki H. Tetrahedron 2022; 123: 132981
- 20 Limberakis C. Tetrahedron Org. Chem. Ser. 2007; 26: 251