RSS-Feed abonnieren
DOI: 10.1055/a-2530-7790
Phantomless estimation of bone mineral density on computed tomography: a scoping review
Phantomlose Schätzung der Knochenmineraldichte in der Computertomografie: ein Scoping Review
Abstract
Background
Age-related conditions like osteoporosis have become more familiar with increasing global life expectancy. Osteoporosis is characterized by reduced bone mineral density and structural weakening of bone tissue that leads to a higher risk of fracture. Dual-energy X-ray absorptiometry is the current standard for diagnosing osteoporosis. Computed tomography provides an alternative for diagnosis, but traditional QCT involves the use of phantoms, which does not allow retrospective or opportunistic assessments of BMD. This study aims to provide an overview of the evidence and feasibility for emerging phantomless techniques for the estimation of BMD on CT.
Methods
A scoping review was conducted to evaluate the feasibility and effectiveness of phantomless BMD estimation using CT. A comprehensive search of Scopus and PubMed databases focused on literature published between 2010 and 2024. Search terms included combinations of “phantomless”, “BMD estimation”, and “CT”. Studies emphasizing accuracy, reliability, and clinical feasibility were included. The review identified 26 relevant studies examining methods of phantomless BMD estimation. The majority of the studies used internal anatomical references to calibrate BMD measurements. These methods demonstrated accuracy comparable to traditional phantom-based techniques. Limitations of the technique included variability in scanner types and inconsistencies caused by patient-specific factors like body composition and contrast agents.
Conclusion
Phantomless BMD estimation methods are a feasible approach to detecting osteoporosis. The possibility to be integrated into routine CT workflows make them an attractive option for opportunistic screening. Further research is necessary to refine methods, ensure consistent results across different clinical settings, and address outstanding issues such as scanner variability and the effects of contrast agents.
Key Points
-
Phantomless CT BMD estimation methods are a feasible approach to detecting osteoporosis.
-
Phantomless is an attractive option for opportunistic diagnosis and screening.
-
Further studies need to address scanner variability and effects of contrast agents.
Citation Format
-
Waqar A, Bazzocchi A, Aparisi Gómez MP. Phantomless estimation of bone mineral density on computed tomography: a scoping review. Rofo 2025; DOI 10.1055/a-2530-7790
Zusammenfassung
Hintergrund
Altersbedingte Erkrankungen wie Osteoporose sind mit der zunehmenden globalen Lebenserwartung häufiger geworden. Osteoporose ist durch eine verringerte Knochenmineraldichte und strukturelle Schwächung des Knochengewebes gekennzeichnet, was zu einem höheren Frakturrisiko führt. Die Dual-Energy-Röntgenabsorptiometrie ist der aktuelle Standard zur Diagnose von Osteoporose. Die Computertomografie bietet eine alternative Methode zur Diagnose, jedoch erfordert das traditionelle QCT die Verwendung von Phantomen, was retrospektive oder opportunistische Bewertungen der Knochenmineraldichte (BMD) nicht zulässt. Diese Studie zielt darauf ab, einen Überblick über die Evidenz und Machbarkeit aufkommender phantomloser Techniken zur Schätzung der BMD in der CT zu geben.
Methode
Eine Scoping-Übersicht wurde durchgeführt, um die Machbarkeit und Wirksamkeit der phantomlosen BMD-Schätzung mittels CT zu bewerten. Eine umfassende Suche in den Datenbanken Scopus und PubMed konzentrierte sich auf Literatur, die zwischen 2010 und 2024 veröffentlicht wurde. Die Suchbegriffe umfassten Kombinationen von „phantomlos“, „BMD-Schätzung“ und „CT“. Studien, die Genauigkeit, Zuverlässigkeit und klinische Machbarkeit betonten, wurden eingeschlossen. Die Übersicht identifizierte 26 relevante Studien, die Methoden der phantomlosen BMD-Schätzung untersuchten. Die Mehrheit der Studien verwendete interne anatomische Referenzen zur Kalibrierung der BMD-Messungen. Diese Methoden zeigten eine vergleichbare Genauigkeit zu traditionellen phantom-basierten Techniken. Zu den Einschränkungen der Technik gehörten die Variabilität der Scanner-Typen und die Inkonsistenzen, die durch patientenspezifische Faktoren wie Körperzusammensetzung und Kontrastmittel verursacht wurden.
Schlussfolgerung
Phantomlose BMD-Schätzungsmethoden sind ein machbarer Ansatz zur Erkennung von Osteoporose. Die Möglichkeit, in routinemäßige CT-Workflows integriert zu werden, macht sie zu einer attraktiven Option für opportunistisches Screening. Weitere Forschung ist notwendig, um Methoden zu verfeinern, konsistente Ergebnisse in verschiedenen klinischen Umgebungen sicherzustellen und verbleibende Probleme, wie die Scanner-Variabilität und die Auswirkungen von Kontrastmitteln, zu adressieren.
Kernaussagen
-
Phantomlose CT-BMD-Schätzmethoden sind ein machbarer Ansatz zur Erkennung von Osteoporose.
-
Phantomlos ist eine attraktive Option für opportunistische Diagnose und Screening.
-
Weitere Studien müssen die Scanner-Variabilität und die Auswirkungen von Kontrastmitteln berücksichtigen.
Publikationsverlauf
Eingereicht: 13. Dezember 2024
Angenommen nach Revision: 25. Januar 2025
Artikel online veröffentlicht:
05. März 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Mallio CA, Vertulli D, Bernetti C. et al. Phantomless Computed Tomography-Based Quantitative Bone Mineral Density Assessment: A Literature Review. Applied Sciences 2024; 14: 1447
- 2 Lee YH, Kim JJ, Jang IG. Patient-Specific Phantomless Estimation of Bone Mineral Density and Its Effects on Finite Element Analysis Results: A Feasibility Study. Comput Math Methods Med 2019; 2019: 4102410
- 3 Aparisi Gómez MP. Nonspinal Fragility Fractures. Semin Musculoskelet Radiol 2016; 20: 330-344
- 4 Guerri S, Mercatelli D, Aparisi Gómez MP. et al. Quantitative imaging techniques for the assessment of osteoporosis and sarcopenia. Quant Imaging Med Surg 2018; 8: 60-85
- 5 Sözen T, Özışık L, Başaran NÇ. An overview and management of osteoporosis. Eur J Rheumatol 2017; 4: 46-56
- 6 Bazzocchi A, Isaac A, Dalili D. et al. Imaging of Metabolic Bone Diseases: The Spine View, Part I. Semin Musculoskelet Radiol 2022; 26: 478-490
- 7 Booz C, Noeske J, Albrecht MH. et al. Diagnostic accuracy of quantitative dual-energy CT-based bone mineral density assessment in comparison to Hounsfield unit measurements using dual x-ray absorptiometry as standard of reference. European Journal of Radiology 2020; 132: 109321
- 8 Rashki Kemmak A, Rezapour A, Jahangiri R. et al. Economic burden of osteoporosis in the world: A systematic review. Med J Islam Repub Iran 2020; 34: 154
- 9 Bazzocchi A, Ferrari F, Diano D. et al. Incidental Findings with Dual-Energy X-Ray Absorptiometry: Spectrum of Possible Diagnoses. Calcif Tissue Int 2012; 91: 149-156
- 10 Bazzocchi A, Diano D, Ponti F. et al. A 360-degree overview of body composition in healthy people: relationships among anthropometry, ultrasonography, and dual-energy x-ray absorptiometry. Nutrition 2014; 30: 696-701
- 11 Bazzocchi A, Ponti F, Albisinni U. et al. DXA: Technical aspects and application. European Journal of Radiology 2016; 85: 1481-1492
- 12 Tricco AC, Lillie E, Zarin W. et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med 2018; 169: 467-473
- 13 Abdullayev N, Neuhaus V-F, Bratke G. et al. Effects of Contrast Enhancement on In-Body Calibrated Phantomless Bone Mineral Density Measurements in Computed Tomography. J Clin Densitometry 2018; 21: 360-366
- 14 Alacreu E, Moratal D, Arana E. Opportunistic screening for osteoporosis by routine CT in Southern Europe. Osteoporos Int 2017; 28: 983-990
- 15 Bartenschlager S, Dankerl P, Chaudry O. et al. BMD accuracy errors specific to phantomless calibration of CT scans of the lumbar spine. Bone 2022; 157: 116304
- 16 Bartenschlager S, Cavallaro A, Pogarell T. et al. Opportunistic Screening With CT: Comparison of Phantomless BMD Calibration Methods. J Bone Miner Res 2023; 38: 1689-1699
- 17 Boomsma MF, Slouwerhof I, van Dalen JA. et al. Use of internal references for assessing CT density measurements of the pelvis as replacement for use of an external phantom. Skelet Radiol 2015; 44: 1597-1602
- 18 Budoff MJ, Malpeso JM, Zeb I. et al. Measurement of phantomless thoracic bone mineral density on coronary artery calcium CT scans acquired with various CT scanner models. Radiology 2013; 267: 830-836
- 19 Eggermont F, Verdonschot N, van der Linden Y. et al. Calibration with or without phantom for fracture risk prediction in cancer patients with femoral bone metastases using CT-based finite element models. PLoS ONE 2019; 14
- 20 Gruenewald LD, Koch V, Martin SS. et al. Diagnostic accuracy of quantitative dual-energy CT-based volumetric bone mineral density assessment for the prediction of osteoporosis-associated fractures. European Radiology 2022; 32: 3076-3084
- 21 Gruenewald LD, Booz C, Gotta J. et al. Incident fractures of the distal radius: Dual-energy CT-derived metrics for opportunistic risk stratification. European Journal of Radiology 2024; 171
- 22 Guo DM, Weng YZ, Yu ZH. et al. Semi-automatic proximal humeral trabecular bone density assessment tool: technique application and clinical validation. Osteoporos Int 2024; 35: 1049-1059
- 23 Habashy AH, Yan X, Brown JK. et al. Estimation of bone mineral density in children from diagnostic CT images: a comparison of methods with and without an internal calibration standard. Bone 2011; 48: 1087-1094
- 24 Kaesmacher J, Liebl H, Baum T. et al. Bone Mineral Density Estimations From Routine Multidetector Computed Tomography: A Comparative Study of Contrast and Calibration Effects. J Comput Assist Tomogr 2017; 41: 217-223
- 25 Lee DC, Hoffmann PF, Kopperdahl DL. et al. Phantomless calibration of CT scans for measurement of BMD and bone strength—Inter-operator reanalysis precision. Bone 2017; 103: 325-333
- 26 Liu L, Si M, Ma H. et al. A hierarchical opportunistic screening model for osteoporosis using machine learning applied to clinical data and CT images. BMC Bioinformatics 2022; 23: 63
- 27 Mao SS, Li D, Luo Y. et al. Application of quantitative computed tomography for assessment of trabecular bone mineral density, microarchitecture and mechanical property. Clin Imaging 2016; 40: 330-338
- 28 Matheson BE, Neeteson NJ, Boyd SK. Establishing error bounds for internal calibration of quantitative computed tomography. Medical Engineering & Physics 2024; 124: 104109
- 29 Oh J, Kim B, Oh G. et al. End-to-End Semi-Supervised Opportunistic Osteoporosis Screening Using Computed Tomography. Endocrinol Metab (Seoul) 2024; 39: 500-510
- 30 Pan Y, Zhao F, Cheng G. et al. Automated vertebral bone mineral density measurement with phantomless internal calibration in chest LDCT scans using deep learning. Br J Radiol 2023; 96: 20230047
- 31 Prado M, Khosla S, Chaput C. et al. Opportunistic application of phantom-less calibration methods for fracture risk prediction using QCT/FEA. Eur Radiol 2021; 31: 9428-9435
- 32 Prado M, Khosla S, Giambini H. Vertebral Fracture Risk Thresholds from Phantom-Less Quantitative Computed Tomography-Based Finite Element Modeling Correlate to Phantom-Based Outcomes. J Clin Densitom 2024; 27: 101465
- 33 Szyszko JA, Aldieri A, La Mattina AA. et al. Phantomless calibration of CT scans for hip fracture risk prediction in silico: Comparison with phantom-based calibration. PLoS ONE 2024; 19
- 34 Therkildsen J, Thygesen J, Winther S. et al. Vertebral Bone Mineral Density Measured by Quantitative Computed Tomography With and Without a Calibration Phantom: A Comparison Between 2 Different Software Solutions. Journal of Clinical Densitometry 2018; 21: 367-374
- 35 Tong X, Fang X, Wang S. et al. Opportunistic screening for osteoporosis using enhanced images based on dual-energy computed tomography material decomposition: a comparison with quantitative computed tomography. Quantitative Imaging in Medicine and Surgery 2024; 14: 352-364
- 36 Van Hedent S, Su KH, Jordan DW. et al. Improving Bone Mineral Density Assessment Using Spectral Detector CT. J Clin Densitom 2019; 22: 374-381
- 37 Weaver AA, Beavers KM, Hightower RC. et al. Lumbar Bone Mineral Density Phantomless Computed Tomography Measurements and Correlation with Age and Fracture Incidence. Traffic Injury Prevention 2015; 16: S153-S160
- 38 Winsor C, Li X, Qasim M. et al. Evaluation of patient tissue selection methods for deriving equivalent density calibration for femoral bone quantitative CT analyses. Bone 2021; 143: 115759
- 39 Aparisi Gómez MP, Isaac A, Dalili D. et al. Imaging of Metabolic Bone Diseases: The Spine View, Part II. Semin Musculoskelet Radiol 2022; 26: 491-500
- 40 Gruenewald LD, Koch V, Yel I. et al. Association of Phantomless Dual-Energy CT-based Volumetric Bone Mineral Density with the Prevalence of Acute Insufficiency Fractures of the Spine. Academic Radiology 2023; 30: 2110-2117
- 41 Koch V, Hokamp NG, Albrecht MH. et al. Accuracy and precision of volumetric bone mineral density assessment using dual-source dual-energy versus quantitative CT: a phantom study. Eur Radiol Exp 2021; 5: 43