Subscribe to RSS
DOI: 10.1055/a-2535-1655
Anti-inflammatory Potential of Plants of Genus Rhus: Decrease in Inflammatory Mediators In Vitro and In Vivo – a Systematic Review

Abstract
Plants from the Rhus genus are renowned for their medicinal properties, including anti-inflammatory effects; however, the mechanisms underlying these effects remain poorly understood. This systematic review, conducted following PRISMA guidelines, evaluated the anti-inflammatory effects of Rhus plants and explored their potential pharmacological mechanisms. A total of 35 articles were included, with the majority demonstrating a low-risk bias, as assessed using the SYRCLE tool. Rhus verniciflua, Rhus chinensis, Rhus coriaria, Rhus succedanea, Rhus tripartite, Rhus crenata, and Rhus trilobata were analyzed in the reviewed articles. In vitro studies consistently demonstrated the ability of Rhus plants to reduce key inflammatory mediators such as TNF-α, IL-1β, and IL-6. In vivo studies confirmed these effects in murine models of inflammation, with doses mostly of 400 and 800 mg/kg body weight, with no reports of toxicity. Fifty-four distinct inflammatory mediators were assessed in vivo; no pattern of mediators was identified that could elucidate the anti-inflammatory mechanisms of the action of Rhus in acute or chronic inflammation. The clinical trial reported anti-inflammatory effects in humans at 1000 mg/kg for 6 weeks. The review data on the Rhus-mediated reduction in inflammatory mediators were integrated and visualized using the Reactome bioinformatics database, which suggested that the mechanism of action of Rhus involves the inhibition of inflammasome signaling. These findings support the potential of Rhus plants as a basis for developing anti-inflammatory therapies. Further research is needed to optimize dosage regimens and fully explore their pharmacological applications.
Keywords
chronic inflammation - inflammasome - NLR signaling - IL-18 - caspases - Rhus - AnacardiaceaePublication History
Received: 09 August 2024
Accepted after revision: 08 January 2025
Article published online:
07 March 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Nathan C, Ding A. Nonresolving inflammation. Cell 2010; 140: 871-882
- 2 Maini MA, Adelowo F, Saleh JA, Weshahi YA, Burmester G, Cutolo M, Flood J, March L, McDonald-Blumer H, Pile K, Pineda C, Thorne C, Kvien T. The global challenges and opportunities in the practice of rheumatology: White paper by the World Forum on Rheumatic and Musculoskeletal Diseases. Clin Rheumatol 2014; 34: 819-829
- 3 Fiehn C, Baraliakos X, Edelmann E, Froschauer S, Feist E, Karberg K, Ruehlmann JM, Schuch F, Welcker M, Zinke S. [Current state, goals and quality standards of outpatient care in rheumatology: position paper of the Professional Association of German Rheumatologists (BDRh)]. Z Rheumatol 2020; 79: 770-779
- 4 Fraenkel L, Bathon JM, England BR, St Clair EW, Arayssi T, Carandang K, Deane KD, Genovese M, Huston KK, Kerr G, Kremer J, Nakamura MC, Russell LA, Singh JA, Smith BJ, Sparks JA, Venkatachalam S, Weinblatt ME, Al-Gibbawi M, Baker JF, Barbour KE, Barton JL, Cappelli L, Chamseddine F, George M, Johnson SR, Kahale L, Karam BS, Khamis AM, Navarro-Millán I, Mirza R, Schwab P, Singh N, Turgunbaev M, Turner AS, Yaacoub S, Akl EA. 2021 American college of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken) 2021; 73: 1108-1123
- 5 Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, Ojha S, Patil CR. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci 2019; 20: 4367
- 6 Tabas I, Glass CK. Anti-Inflammatory therapy in chronic disease: Challenges and opportunities. Science 2013; 339: 166-172
- 7 Ghasemian M, Owlia S, Owlia MB. Review of anti-inflammatory herbal medicines. Adv Pharmacol Sci 2016; 2016: 1-11
- 8 Wainwright CL, Teixeira MM, Adelson DL, Braga FC, Buenz EJ, Campana PRV, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AMS, Mazars C, Newman DJ, Nic Lughadha E, Pádua RM, Pimenta AMC, Parra JAA, Qu Z, Shen H, Spedding M, Wolfender JL. Future directions for the discovery of natural product-derived immunomodulating drugs: an IUPHAR positional review. Pharmacol Res 2022; 177: 106076
- 9 Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33: 1582-1614
- 10 Krawczyk M, Burzynska-Pedziwiatr I, Wozniak LA, Bukowiecka-Matusiak M. Impact of polyphenols on inflammatory and oxidative stress factors in diabetes mellitus: Nutritional antioxidants and their application in improving antidiabetic therapy. Biomolecules 2023; 13: 1402
- 11 Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci 2020; 12: 1-10
- 12 Rayne S, Mazza G. Biological activities of extracts from sumac (Rhus spp.): A review. Plant Foods Hum Nutr Dordr Neth 2007; 62: 165-175
- 13 Simpson MG. 8 – Diversity and Classification of Flowering Plants: Eudicots. In: Simpson MG. Hrsg. Plant Systematics (Second Edition). San Diego: Academic Press; 2010: 275-448
- 14 Wannan BS. Analysis of generic relationships in anacardiaceae. Blumea – Biodivers Evol Biogeogr Plants 2006; 51: 165-195
- 15 Anderson JL. Vascular plants of Arizona: Anacardiaceae. Canotia 2007; 3 (02) 13-22
- 16 Hernández ARA, Morrone JJ, Terrazas T, López-Mata L. Análisis de trazos de las especies mexicanas de rhus subgénero lobadium (angiospermae: anacardiaceae). Interciencia 2006; 31: 900-904
- 17 Recio MC, Andujar I, Rios JL. Anti-inflammatory agents from plants: Progress and potential. Curr Med Chem 2012; 19: 2088-2103
- 18 Alsamri H, Athamneh K, Pintus G, Eid AH, Iratni R. Pharmacological and antioxidant activities of Rhus coriaria L. (Sumac). Antioxidants 2021; 10: 73
- 19 Calabrò A, Ligotti ME, Accardi G, Di Majo D, Caruso C, Candore G, Aiello A. The nutraceutical properties of Rhus coriaria Linn: Potential application on human health and aging biomedicine. Int J Mol Sci 2023; 24: 6206
- 20 Jayasooriya RGPT, Molagoda IMN, Park C, Jeong JW, Choi YH, Moon DO, Kim MO, Kim GY. Molecular chemotherapeutic potential of butein: A concise review. Food Chem Toxicol 2018; 112: 1-10
- 21 Choi W, Jung H, Kim K, Lee S, Yoon S, Park J, Kim S, Cheon S, Eo W, Lee S. Rhus verniciflua stokes against advanced cancer: A perspective from the Korean integrative cancer center. J Biomed Biotechnol 2012; 2012: 1-7
- 22 Mohit M, Nouri M, Samadi M, Nouri Y, Heidarzadeh-Esfahani N, Venkatakrishnan K, Jalili C. The effect of sumac (Rhus coriaria L.) supplementation on glycemic indices: A systematic review and meta-analysis of controlled clinical trials. Complement Ther Med 2021; 61: 102766
- 23 Kim JH, Shin YC, Ko SG. Integrating traditional medicine into modern inflammatory diseases care: Multitargeting by Rhus verniciflua Stokes. Mediators Inflamm 2014; 2014: 1-17
- 24 Roh K, Lee J, Kang H, Park KW, Song Y, Lee S, Ku JM. Synthesis and evaluation of butein derivatives for in vitro and in vivo inflammatory response suppression in lymphedema. Eur J Med Chem 2020; 197: 112280
- 25 Liu Y, Fu Y, Zhang Y, Liu F, Rose GM, He X, Yi X, Ren R, Li Y, Zhang Y, Wu H, Lv C, Zhang H. Butein attenuates the cytotoxic effects of LPS-stimulated microglia on the SH-SY5Y neuronal cell line. Eur J Pharmacol 2020; 868: 172858
- 26 Kim BG, Song Y, Lee MG, Ku JM, Jin SJ, Hong JW, Lee S, Kang H. Macrophages from mice administered Rhus verniciflua Stokes extract show selective anti-inflammatory activity. Nutrients 2018; 10: 1926
- 27 Li KK, Shen SS, Deng X, Shiu HT, Siu WS, Leung PC, Ko CH, Cheng BH. Dihydrofisetin exerts its anti-inflammatory effects associated with suppressing ERK/p 38 MAPK and Heme Oxygenase-1 activation in lipopolysaccharide-stimulated RAW 264.7 macrophages and carrageenan-induced mice paw edema. Int Immunopharmacol 2018; 54: 366-374
- 28 Zheng W, Zhang H, Jin Y, Wang Q, Chen L, Feng Z, Chen H, Wu Y. Butein inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes and slows the progression of osteoarthritis in mice. Int Immunopharmacol 2017; 42: 1-10
- 29 Liao W, Wen Y, Wang J, Zhao M, Lv S, Chen N, Li Y, Wan L, Zheng Q, Mou Y, Zhao Z, Tang J, Zeng J. Gallic acid alleviates gastric precancerous lesions through inhibition of epithelial mesenchymal transition via Wnt/β-catenin signaling pathway. J Ethnopharmacol 2023; 302: 115885
- 30 Chantarasakha K, Asawapanumas T, Suntivich R, Panya A, Phonsatta N, Thiennimitr P, Laoteng K, Tepaamorndech S. Hatakabb, a herbal extract, contains pyrogallol as the novel mediator inhibiting LPS-induced TNF-α production by NF-κB inactivation and HMOX-1 upregulation. J Funct Foods 2022; 90: 104992
- 31 Zhou G, Kong WS, Li ZC, Xie RF, Yu TY, Zhou X. Effects of Qing Chang suppository powder and its ingredients on IL-17 signal pathway in HT-29 cells and DSS-induced mice. Phytomedicine 2021; 87: 153573
- 32 Yu T, Li Z, Xu L, Yang M, Zhou X. Anti-inflammation effect of Qingchang suppository in ulcerative colitis through JAK2/STAT3 signaling pathway in vitro and in vivo. J Ethnopharmacol 2021; 266: 113442
- 33 Mendonca P, Taka E, Bauer D, Cobourne-Duval M, Soliman KFA. The attenuating effects of 1, 2, 3, 4, 6 penta-O-galloyl-β- d-glucose on inflammatory cytokines release from activated BV-2 microglial cells. J Neuroimmunol 2017; 305: 9-15
- 34 Martinelli G, Angarano M, Piazza S, Fumagalli M, Magnavacca A, Pozzoli C, Khalilpour S, DellʼAgli M, Sangiovanni E. The nutraceutical properties of sumac (Rhus coriaria L.) against gastritis: Antibacterial and anti-inflammatory activities in gastric epithelial cells infected with H. pylori. Nutrients 2022; 14: 1757
- 35 Khalil M, Bazzi A, Zeineddine D, Jomaa W, Daher A, Awada R. Repressive effect of Rhus coriaria L. fruit extracts on microglial cells-mediated inflammatory and oxidative stress responses. J Ethnopharmacol 2021; 269: 113748
- 36 Khalilpour S, Sangiovanni E, Piazza S, Fumagalli M, Beretta G, DellʼAgli M. In vitro evidences of the traditional use of Rhus coriaria L. fruits against skin inflammatory conditions. J Ethnopharmacol 2019; 238: 111829
- 37 Momeni A, Maghsoodi H, Rezapour S, Shiravand M, Mardani M. Reduction of expression of IL‐18, IL‐1β genes in the articular joint by sumac fruit extract (Rhus coriaria L.). Mol Genet Genomic Med 2019; 7: e664
- 38 Yan J, Ni B, Sheng G, Zhang Y, Xiao Y, Ma Y, Li H, Wu H, Tu C. Rhoifolin ameliorates osteoarthritis via regulating autophagy. Front Pharmacol 2021; 12: 661072
- 39 Xu MX, Ge CX, Li Q, Lou DS, Hu LF, Sun Y, Xiong MX, Lai LL, Zhong SY, Yi C, Wang BC, Tan J. Fisetin nanoparticles protect against PM2.5 exposure-induced neuroinflammation by down-regulation of astrocytes activation related NF-κB signaling pathway. J Funct Foods 2020; 65: 103716
- 40 Ben Barka Z, Grintzalis K, Polet M, Heude C, Sommer U, Ben Miled H, Ben Rhouma K, Mohsen S, Tebourbi O, Schneider YJ. A combination of NMR and liquid chromatography to characterize the protective effects of Rhus tripartita extracts on ethanol-induced toxicity and inflammation on intestinal cells. J Pharm Biomed Anal 2018; 150: 347-354
- 41 Rodríguez-Castillo AJ, González-Chávez SA, Portillo-Pantoja I, Cruz-Hermosillo E, Pacheco-Tena C, Chávez-Flores D, Delgado-Gardea MCE, Infante-Ramírez R, Ordaz-Ortiz JJ, Sánchez-Ramírez B. Aqueous extracts of Rhus trilobata inhibit the lipopolysaccharide-induced inflammatory response in vitro and in vivo. Plants 2024; 13: 2840
- 42 Ohmoto M, Matsuya A, Mouri M, Takemoto M, Daikoku T. Exploring the multiple effects of butein on adipogenic differentiation, inflammatory responses, and glucose metabolism in cellular models. Food Chem Adv 2024; 5: 100851
- 43 Zhang Y, Wang O, Mi H, Yi J, Cai S. Rhus chinensis Mill. fruits prevent necrotizing enterocolitis in rat pups via regulating the expressions of key proteins involved in multiple signaling pathways. J Ethnopharmacol 2022; 290: 115103
- 44 PubChem. Butein. Accessed August 8, 2023 at: https://pubchem.ncbi.nlm.nih.gov/compound/5281222
- 45 PubChem. Fustin. Accessed August 8, 2023 at: https://pubchem.ncbi.nlm.nih.gov/compound/5317435
- 46 PubChem. Gallic Acid. Accessed December 31, 2024 at: https://pubchem.ncbi.nlm.nih.gov/compound/370
- 47 PubChem. beta-Penta-O-galloyl-D-glucose. Accessed August 8, 2023 at: https://pubchem.ncbi.nlm.nih.gov/compound/374874
- 48 PubChem. Rhoifolin. Accessed December 31, 2024 at: https://pubchem.ncbi.nlm.nih.gov/compound/5282150
- 49 Hattori S, Matsuda H. Rhoifolin, a new flavone glycoside, isolated from the leaves of Rhus succedanea . Arch Biochem Biophys 1952; 37: 85-89
- 50 PubChem. Butin. Accessed December 31, 2024 at: https://pubchem.ncbi.nlm.nih.gov/compound/92775
- 51 Althurwi HN, Altharawi A, Alharthy KM, Albaqami FF, Alzarea SI, Al-Abbasi FA, Shahid Nadeem M, Kazmi I. Butin prevent liver damage triggered by D-galactosamine via regulating lipid peroxidation and proinflammatory cytokines in rodents. J King Saud Univ – Sci 2023; 35: 102934
- 52 PubChem. Pyrogallol. Accessed August 8, 2023 at: https://pubchem.ncbi.nlm.nih.gov/compound/1057
- 53 PubChem. Fisetin. Accessed August 18, 2023 at: https://pubchem.ncbi.nlm.nih.gov/compound/5281614
- 54 Kim S, Shin SP, Kim SK, Ham YL, Choi HS, Kim MJ, Han SH, Suk KT. Fermented‐ Rhus verniciflua extract ameliorate Helicobacter pylori eradication rate and gastritis. Food Sci Nutr 2021; 9: 900-908
- 55 Zhu Y, Wang K, Ma Z, Liu D, Yang Y, Sun M, Wen A, Hao Y, Ma S, Ren F, Xin Z, Li Y, Di S, Liu J. SIRT1 activation by butein attenuates sepsis-induced brain injury in mice subjected to cecal ligation and puncture via alleviating inflammatory and oxidative stress. Toxicol Appl Pharmacol 2019; 363: 34-46
- 56 Kim BG, Song Y, Lee MG, Ku JM, Jin SJ, Hong JW, Lee S, Kang H. Macrophages from mice administered Rhus verniciflua Stokes extract show selective anti-inflammatory activity. Nutrients 2018; 10: 1926
- 57 Kim HS, Kim HG, Im HJ, Lee JS, Lee SB, Kim WY, Lee HW, Lee SK, Byun CK, Son CG. Antiemetic and myeloprotective effects of Rhus verniciflua Stoke in a cisplatin-induced rat model. Evid Based Complement Alternat Med 2017; 2017: 1-10
- 58 Wang M, Xu X, Sheng M, Zhang M, Wu F, Zhao Z, Guo M, Fang B, Wu J. Tannic acid protects against colitis by regulating the IL17 – NFκB and microbiota – methylation pathways. Int J Biol Macromol 2024; 274: 133334
- 59 Ma N, Zhang Y, Wang T, Sun Y, Cai S. The preventive effect of Chinese sumac fruit against monosodium urate-induced gouty arthritis in rats by regulating several inflammatory pathways. Food Funct 2023; 14: 1148-1159
- 60 Ma N, Sun Y, Yi J, Zhou L, Cai S. Chinese sumac (Rhus chinensis Mill.) fruits alleviate indomethacin-induced gastric ulcer in mice by improving oxidative stress, inflammation and apoptosis. J Ethnopharmacol 2022; 284: 114752
- 61 Sun Y, Cai S, Zhang Y, Ma N, Yi J, Hu X, Wang T. Protective effect of Rhus chinensis Mill. fruits on 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine-induced cholestasis in mice via ameliorating oxidative stress and inflammation. Nutrients 2022; 14: 4090
- 62 Sun Y, Zhang Y, Ma N, Cai S. Rhus chinensis Mill. fruits alleviate liver injury induced by isoniazid and rifampicin through regulating oxidative stress, apoptosis, and bile acid transport. J Ethnopharmacol 2023; 310: 116387
- 63 Sun Y, Ma N, Liu X, Yi J, Cai S. Preventive effects of Chinese sumac fruits against acetaminophen-induced liver injury in mice via regulating oxidative stress, inflammation and apoptosis. J Funct Foods 2021; 87: 104830
- 64 Wu Z, Zhang Y, Gong X, Cheng G, Pu S, Cai S. The preventive effect of phenolic-rich extracts from Chinese sumac fruits against nonalcoholic fatty liver disease in rats induced by a high-fat diet. Food Funct 2020; 11: 799-812
- 65 Zhou J, Liu X, Chen T, Cheng G, Cai S. Preventive effect of ethanol extract from Chinese sumac fruits against tetrachloromethane-induced liver fibrosis in mice. Food Funct 2020; 11: 7061-7072
- 66 El-Elimat T, Al-Tal BK, Al-Sawalha NA, Alsaggar M, Nusair SD, Al-Qiam R, Al Sharie AH, El Hajji F, Hamadneh L. Sumc (Rhus coriaria L.) fruit ameliorates paracetamol-induced hepatotoxicity. Food Biosci 2023; 52: 102488
- 67 Hariri N, Darafshi Ghahroudi S, Jahangiri S, Borumandnia N, Narmaki E, Saidpour A. The beneficial effects of sumac (Rhus coriaria L.) supplementation along with restricted calorie diet on anthropometric indices, oxidative stress, and inflammation in overweight or obese women with depression: A randomized clinical trial. Phytother Res 2020; 34: 3041-3051
- 68 Isik S, Tayman C, Cakir U, Koyuncu I, Taskin Turkmenoglu T, Cakir E. Sumac (Rhus coriaria) for the prevention and treatment of necrotizing enterocolitis. J Food Biochem 2019; 43: e13068
- 69 Sun Y, Ma N, Liu X, Yi J, Cai S. Preventive effects of Chinese sumac fruits against acetaminophen-induced liver injury in mice via regulating oxidative stress, inflammation and apoptosis. J Funct Foods 2021; 87: 104830
- 70 Zhou J, Liu X, Chen T, Cheng G, Cai S. Preventive effect of ethanol extract from Chinese sumac fruits against tetrachloromethane-induced liver fibrosis in mice. Food Funct 2020; 11: 7061-7072
- 71 Ma N, Sun Y, Yi J, Zhou L, Cai S. Chinese sumac (Rhus chinensis Mill.) fruits alleviate indomethacin-induced gastric ulcer in mice by improving oxidative stress, inflammation and apoptosis. J Ethnopharmacol 2022; 284: 114752
- 72 Ehsani S, Zolfaghari H, Kazemi S, Shidfar F. Effects of sumac (Rhus coriaria) on lipid profile, leptin and steatosis in patients with non-alcoholic fatty liver disease: A randomized double-blind placebo-controlled trial. J Herb Med 2022; 31: 100525
- 73 Wu Z, Zhang Y, Gong X, Cheng G, Pu S, Cai S. The preventive effect of phenolic-rich extracts from Chinese sumac fruits against nonalcoholic fatty liver disease in rats induced by a high-fat diet. Food Funct 2020; 11: 799-812
- 74 Xu MX, Ge CX, Li Q, Lou DS, Hu LF, Sun Y, Xiong MX, Lai LL, Zhong SY, Yi C, Wang BC, Tan J. Fisetin nanoparticles protect against PM2.5 exposure-induced neuroinflammation by down-regulation of astrocytes activation related NF-κB signaling pathway. J Funct Foods 2020; 65: 103716
- 75 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372: n71
- 76 Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLEʼs risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14: 43
- 77 Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, DʼEustachio P, Stein L, Hermjakob H. Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinformatics 2017; 18: 142
- 78 Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, Griss J, Sevilla C, Matthews L, Gong C, Deng C, Varusai T, Ragueneau E, Haider Y, May B, Shamovsky V, Weiser J, Brunson T, Sanati N, Beckman L, Shao X, Fabregat A, Sidiropoulos K, Murillo J, Viteri G, Cook J, Shorser S, Bader G, Demir E, Sander C, Haw R, Wu G, Stein L, Hermjakob H, DʼEustachio P. The reactome pathway knowledgebase 2022. Nucleic Acids Res 2022; 50: D687-D692
- 79 Fabregat A, Sidiropoulos K, Viteri G, Marin-Garcia P, Ping P, Stein L, DʼEustachio P, Hermjakob H. Reactome diagram viewer: Data structures and strategies to boost performance. Bioinforma Oxf Engl 2018; 34: 1208-1214
- 80 Deng W, Du H, Liu D, Ma Z. Editorial: The role of natural products in chronic inflammation. Front Pharmacol 2022; 13: 901538
- 81 Liu X, Lin YJ, Cheng Y. Complementary and alternative therapies for inflammatory diseases. Evid-Based Complement Alternat Med 2016; 2016: 8324815
- 82 Caballero-Hernández CI, González-Chávez SA, Urenda-Quezada A, Reyes-Cordero GC, Peláez-Ballestas I, Álvarez-Hernández E, Pacheco-Tena C. Prevalence of complementary and alternative medicine despite limited perceived efficacy in patients with rheumatic diseases in Mexico: Cross-sectional study. PLoS One 2021; 16: e0257319
- 83 Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus (Calcutta) 2022; 65: 399-411
- 84 Chen Q, Davis KR. The potential of plants as a system for the development and production of human biologics. F1000Res 2016; 5: F1000 Faculty Rev-912
- 85 Nunes CDR, Barreto Arantes M, Menezes de Faria Pereira S, Leandro da Cruz L, de Souza Passos M, Pereira de Moraes L, Vieira IJC, Barros de Oliveira D. Plants as sources of anti-inflammatory agents. Molecules 2020; 25: 3726
- 86 Choudhary M, Kumar V, Malhotra H, Singh S. Medicinal plants with potential anti-arthritic activity. J Intercult Ethnopharmacol 2015; 4: 147
- 87 Li MC, Zhang YQ, Meng CW, Gao JG, Xie CJ, Liu JY, Xu YN. Traditional uses, phytochemistry, and pharmacology of Toxicodendron vernicifluum (Stokes) F.A. Barkley – A review. J Ethnopharmacol 2021; 267: 113476
- 88 Heirangkhongjam MD, Ngaseppam IS. Traditional medicinal uses and pharmacological properties of Rhus chinensis Mill.: A systematic review. Eur J Integr Med 2018; 21: 43-49
- 89 Olorunnisola SO, Adetutu A, Owoade AO, Adesina BT, Adegbola P. Toxicity evaluation and protective effect of Rhus longipes Engl. leaf extract in paracetamol induced oxidative stress in wister rats. J Phytopharmacol 2017; 6: 73-77
- 90 Varela-Rodríguez L, Sánchez-Ramírez B, Saenz-Pardo-Reyes E, Ordaz-Ortiz JJ, Castellanos-Mijangos RD, Hernández-Ramírez VI, Cerda-García-Rojas CM, González-Horta C, Talamás-Rohana P. Antineoplastic activity of Rhus trilobata Nutt. (Anacardiaceae) against ovarian cancer and identification of active metabolites in this pathology. Plants 2021; 10: 2074
- 91 Mutuku A, Mwamburi L, Keter L, Ondicho J, Korir R, Kuria J, Chemweno T, Mwitari P. Evaluation of the antimicrobial activity and safety of Rhus vulgaris (Anacardiaceae) extracts. BMC Complement Med Ther 2020; 20: 272
- 92 Candido J, Hagemann T. Cancer-related inflammation. J Clin Immunol 2013; 33: S79-S84
- 93 Mutuku A, Mwamburi L, Keter L, Ondicho J, Korir R, Kuria J, Chemweno T, Mwitari P. Evaluation of the antimicrobial activity and safety of Rhus vulgaris (Anacardiaceae) extracts. BMC Complement Med Ther 2020; 20: 272
- 94 Camps J. Oxidative Stress and Inflammation in Non-Communicable Diseases – Molecular Mechanisms and Perspectives in Therapeutics. New York, NY: Springer Berlin Heidelberg; 2014
- 95 Tejedor Garcia N, Garcia Bermejo L, Fernandez Martinez AB, Olmos Centenera G, Kumari R, Xu Q, Cheng X, Watson S, Lucio Cazaña FJD. MEDLINE-based assessment of animal studies on Chinese herbal medicine. J Ethnopharmacol 2012; 140: 545-549
- 96 Zhang Y, Zhang Y, Yi J, Cai S. Phytochemical characteristics and biological activities of Rhus chinensis Mill.: A review. Curr Opin Food Sci 2022; 48: 100925
- 97 Ma D, Wang S, Shi Y, Ni S, Tang M, Xu A. The development of traditional Chinese medicine. J Tradit Chin Med Sci 2021; 8: S1
- 98 Heinrich M, Jalil B, Abdel-Tawab M, Echeverria J, Kulić Ž, McGaw LJ, Pezzuto JM, Potterat O, Wang JB. Best practice in the chemical characterisation of extracts used in pharmacological and toxicological research – The ConPhyMP-guidelines. Front Pharmacol 2022; 13: 953205
- 99 Padmavathi G, Roy NK, Bordoloi D, Arfuso F, Mishra S, Sethi G, Bishayee A, Kunnumakkara AB. Butein in health and disease: A comprehensive review. Phytomedicine Int J Phytother Phytopharm 2017; 25: 118-127
- 100 Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, Ling YY, Melos KI, Pirtskhalava T, Inman CL, McGuckian C, Wade EA, Kato JI, Grassi D, Wentworth M, Burd CE, Arriaga EA, Ladiges WL, Tchkonia T, Kirkland JL, Robbins PD, Niedernhofer LJ. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 2018; 36: 18-28
- 101 Jiang Y, Pei J, Zheng Y, Miao YJ, Duan BZ, Huang LF. Gallic acid: A potential anti-cancer agent. Chin J Integr Med 2022; 28: 661-671
- 102 Jiang YH, Bi JH, Wu MR, Ye SJ, Hu L, Li LJ, Yi Y, Wang HX, Wang LM. In vitro anti-hepatocellular carcinogenesis of 1, 2, 3, 4, 6-Penta-O-galloyl-β-D-glucose. Food Nutr Res 2023; 67: 9244
- 103 Adnan M, Patel M, Snoussi M. Hrsg. Ethnobotany and Ethnopharmacology of Medicinal and Aromatic Plants: Steps Towards Drug Discovery. First edition. Boca Raton, FL: CRC Press; 2023
- 104 Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: A review. Lab Anim Res 2022; 38: 18
- 105 Bernardette Martínez-Rizo A, Fosado-Rodríguez R, César Torres-Romero J, César Lara-Riegos J, Alberto Ramírez-Camacho M, Ly Arroyo Herrera A, Elizabeth Villa De La Torre F. Ceballos Góngora E, Ermilo Arana-Argáez V. Models in vivo and in vitro for the study of acute and chronic inflammatory activity: A comprehensive review. Int Immunopharmacol 2024; 135: 112292
- 106 Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci 2019; 20: 6008
- 107 Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9: 7204-7218
- 108 Busia K. Perspectives on animal experimentation in herbal medicine research: Ethical dilemmas and scientific progress. J Herb Med 2024; 46: 100903
- 109 Kondo N, Kuroda T, Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci 2021; 22: 10922
- 110 Anton-Pampols P, Diaz-Requena C, Martinez-Valenzuela L, Gomez-Preciado F, Fulladosa X, Vidal-Alabro A, Torras J, Lloberas N, Draibe J. The role of inflammasomes in glomerulonephritis. Int J Mol Sci 2022; 23: 4208
- 111 Marafini I, Sedda S, Dinallo V, Monteleone G. Inflammatory cytokines: From discoveries to therapies in IBD. Expert Opin Biol Ther 2019; 19: 1207-1217
- 112 Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014; 2014: 561459
- 113 Hudek R, Sommer F, Kerwat M, Abdelkawi AF, Loos F, Gohlke F. Propionibacterium acnes in shoulder surgery: true infection, contamination, or commensal of the deep tissue?. J Shoulder Elbow Surg 2014; 23: 1763-1771
- 114 Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem 2013; 114: 525-531
- 115 Tedgui A, Mallat Z. Cytokines in atherosclerosis: Pathogenic and regulatory pathways. Physiol Rev 2006; 86: 515-581
- 116 Turchin I, Bourcier M. The role of interleukins in the pathogenesis of dermatological immune-mediated diseases. Adv Ther 2022; 39: 4474-4508
- 117 Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol 2017; 17: 49-59
- 118 Kamali AN, Zian Z, Bautista JM, Hamedifar H, Hossein-Khannazer N, Hosseinzadeh R, Yazdani R, Azizi G. The potential role of pro-inflammatory and anti-inflammatory cytokines in epilepsy pathogenesis. Endocr Metab Immune Disord Drug Targets 2021; 21: 1760-1774
- 119 Plemmenos G, Evangeliou E, Polizogopoulos N, Chalazias A, Deligianni M, Piperi C. Central regulatory role of cytokines in periodontitis and targeting options. Curr Med Chem 2021; 28: 3032-3058
- 120 Li Y, Huang H, Liu B, Zhang Y, Pan X, Yu XY, Shen Z, Song YH. Inflammasomes as therapeutic targets in human diseases. Signal Transduct Target Ther 2021; 6: 247