RSS-Feed abonnieren
DOI: 10.1055/a-2537-6558
Energy Savings Potential for MRI Scanners in Routine Clinical Practice
Artikel in mehreren Sprachen: English | deutsch
Abstract
Purpose
We investigated the energy savings in our radiology department by changing the manner of operation of MRI scanners.
Materials and Methods
Since October 2022, two of our MRIs were consistently shut down overnight and on weekends instead of being left in prepared-to-scan mode. Also, an energy-saving mode was activated for one of the scanners. Previously, the scanners were only shut down on some days, and no energy-saving mode was active. We determined the energy savings by measuring the power consumption in the section of the building where the two MRI scanners are housed and comparing it with previous values.
Results
By shutting down both MRIs at night, the building section’s power consumption could be reduced by 7.04 kW, and by activating the energy-saving mode by an additional 2.15 kW. Through these measures, annual energy savings of up to 25000 kWh were achieved. This corresponds to a cost reduction of approx. EUR 4200, as well as a reduction in CO2 emissions of about 10t. According to our measurements, a hospital that has previously left its MRIs ready for scanning at all times would save up to 20000 kWh per year per scanner, which corresponds to approx. EUR 3300 in cost savings and a reduction in CO2 emissions of approx. 8t. In addition, there was no noticeable impact on the quality of patient care.
Conclusion
Energy-saving measures in radiology departments can be implemented effectively and with little effort by changing the manner of operation of MRI scanners.
Key Points
-
Shutting down MRIs outside of routine operating hours reduces power consumption
-
Activating an energy-saving mode further reduces consumption
-
Implementing these measures is simple and has no identifiable disadvantages
Citation Format
-
Thurner J, Fellner C, Stroszczynski C et al. Energy Savings Potential for MRI Scanners in Routine Clinical Practice. Rofo 2025; DOI 10.1055/a-2537-6558
Publikationsverlauf
Eingereicht: 02. September 2024
Angenommen nach Revision: 05. Februar 2025
Artikel online veröffentlicht:
27. März 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Heye T, Knoerl R, Wehrle T. et al. The Energy Consumption of Radiology: Energy- and Cost-saving Opportunities for CT and MRI Operation. Radiology 2020; 295: 593-605
- 2 Management-Krankenhaus. Energiemanagement im Uniklinikum Regensburg | Management-Krankenhaus. Zugriff am 11. Februar 2024 unter: https://www.management-krankenhaus.de/topstories/bauen-einrichten/energiemanagement-im-uniklinikum-regensburg
- 3 Goetzler W, Guernsey M, Foley K. et al. Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances (2015 Update). Zugriff am 18. Dezember 2023 unter: https://www.energy.gov/sites/prod/files/2016/06/f32/DOE-BTO%20Comml%20Appl%20Report%20-%20Full%20Report_0.pdf
- 4 Esmaeili A, McGuire C, Overcash M. et al. Environmental impact reduction as a new dimension for quality measurement of healthcare services. International Journal of Health Care Quality Assurance 2018; 31: 910-922
- 5 Woolen SA, Becker AE, Martin AJ. et al. Ecodesign and Operational Strategies to Reduce the Carbon Footprint of MRI for Energy Cost Savings. Radiology 2023; 307: e230441
- 6 Statista. Industriestrompreise inkl. Stromsteuer in Deutschland bis 2024 | Statista. Zugriff am 23. November 2024 unter: https://de.statista.com/statistik/daten/studie/252029/umfrage/industriestrompreise-inkl-stromsteuer-in-deutschland/
- 7 Statista. CO₂-Emissionsfaktor für den Strommix in Deutschland bis 2023 | Statista. Zugriff am 23. November 2024 unter: https://de.statista.com/statistik/daten/studie/38897/umfrage/co2-emissionsfaktor-fuer-den-strommix-in-deutschland-seit-1990/
- 8 Schreyer AG, Schneider K, Dendl LM. et al. Patientenzentrierte Radiologie – Eine Hinführung durch ein narratives Review. RoFo 2022; 194: 873-881
- 9 European Commission. Eurobarometer: Protecting the environment and climate (03.03.2020). https://ec.europa.eu/commission/presscorner/detail/en/ip_20_331
- 10 Chawla A, Chinchure D, Marchinkow LO. et al. Greening the Radiology Department: Not a Big Mountain to Climb. Can Assoc Radiol J 2017; 68: 234-236
- 11 Sumner C, Ikuta I, Garg T. et al. Approaches to Greening Radiology. Acad Radiol 2023; 30: 528-535
- 12 Woolen SA, Kim CJ, Hernandez AM. et al. Radiology Environmental Impact: What Is Known and How Can We Improve?. Acad Radiol 2023; 30: 625-630
- 13 Chaban YV, Vosshenrich J, McKee H. et al. Environmental Sustainability and MRI: Challenges, Opportunities, and a Call for Action. J Magn Reson Imaging 2024; 59: 1149-1167
- 14 Palm V, Heye T, Molwitz I. et al. Nachhaltigkeit und Klimaschutz in der Radiologie – Ein Überblick. RoFo 2023; 195: 981-988
- 15 Heye T, Meyer MT, Merkle EM. et al. Turn It Off! A Simple Method to Save Energy and CO2 Emissions in a Hospital Setting with Focus on Radiology by Monitoring Nonproductive Energy-consuming Devices. Radiology 2023; 307: e230162
- 16 Meteostat. Regensburg | Wetterrückblick & Klimadaten | Meteostat. Zugriff am 23. November 2024 unter: https://meteostat.net/de/station/10776?t=2022–02–07/2022–02–20
- 17 Meteostat. Regensburg | Wetterrückblick & Klimadaten | Meteostat. Zugriff am 23. November 2024 unter: https://meteostat.net/de/station/10776?t=2023–02–06/2023–02–19
- 18 Brown M, Snelling E, De Alba M. et al. Quantitative Assessment of Computed Tomography Energy Use and Cost Savings Through Overnight and Weekend Power Down in a Radiology Department. Can Assoc Radiol J 2023; 74: 298-304
- 19 Prasanna PM, Siegel E, Kunce A. Greening radiology. Journal of the American College of Radiology 2011; 8: 780-784
- 20 McCarthy CJ, Gerstenmaier JF, O’ Neill AC. et al. EcoRadiology--pulling the plug on wasted energy in the radiology department. Acad Radiol 2014; 21: 1563-1566
- 21 Büttner L, Posch H, Auer TA. et al. Switching off for future-Cost estimate and a simple approach to improving the ecological footprint of radiological departments. Eur J Radiol Open 2021; 8: 100320
- 22 Hainc N, Brantner P, Zaehringer C. et al. Green Fingerprint Project: Evaluation of the Power Consumption of Reporting Stations in a Radiology Department. Acad Radiol 2020; 27: 1594-1600
- 23 Klein HM. Ein neuer Ansatz zur Verbesserung der Energieeffizienz in radiologischen Versorgungseinheiten. RoFo 2023; 195: 416-425
- 24 DRG. Kleiner Aufwand, große Wirkung – sechs Energiesparstipps für die Radiologie. Zugriff am 28. Februar 2024 unter: https://www.nachhaltigkeit.drg.de/de-DE/10078/energiesparstipps-fuer-die-radiologie/
- 25 DGMP. Handlungsempfehlungen zur Energieeinsparung in radiologischen, strahlentherapeutischen und nuklearmedizinischen Einrichtungen. Zugriff am 28. Februar 2024 unter: https://www.dgmp.de/de-DE/1580/handlungsempfehlungen-zur-energieeinsparung-in-radiologischen-strahlentherapeutischen-und-nuklearmedizinischen-einrichtungen/
- 26 Johnson PM, Lin DJ, Zbontar J. et al. Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI. Radiology 2023; 307: e220425
- 27 Recht MP, Zbontar J, Sodickson DK. et al. Using Deep Learning to Accelerate Knee MRI at 3 T: Results of an Interchangeability Study. AJR Am J Roentgenol 2020; 215: 1421-1429
- 28 Edalati M, Zheng Y, Watkins MP. et al. Implementation and prospective clinical validation of AI-based planning and shimming techniques in cardiac MRI. Med Phys 2022; 49: 129-143
- 29 Doo FX, Vosshenrich J, Cook TS. et al. Environmental Sustainability and AI in Radiology: A Double-Edged Sword. Radiology 2024; 310: e232030