Subscribe to RSS
DOI: 10.1055/a-2540-3349
Läsionspräparation bei peripheren Arterien – Fact or Fashion?
Lesion Preparation in Peripheral Arteries – Fact or Fashion?
Zusammenfassung
Die periphere arterielle Verschlusskrankheit (pAVK) ist in dem überwiegenden Anteil der Fälle durch stenosierende atherosklerotische Läsionen der peripheren Arterien der unteren Extremität bedingt. Neben asymptomatischen Verläufen ist die intermittierende Claudicatio-Symptomatik die häufigste Manifestation, im fortgeschritteneren Stadium der Erkrankung tritt eine chronische extremitätenbedrohende Ischämie (CLTI) auf. Die konservativ-medikamentöse sekundärpräventive Therapie repräsentiert einen wesentlichen Grundpfeiler in allen Stadien der pAVK, während die endovaskuläre und die offene gefäßchirurgische Revaskularisation je nach Patienten- und Läsionsmerkmalen einen hohen Stellenwert besitzen und komplementär oder kombiniert zum Einsatz kommen können. Bei Patienten mit Claudicatio ist die Verbesserung der schmerzfreien Gehstrecke das primäre Therapieziel, während bei Patienten mit CLTI das amputationsfreie Überleben im Vordergrund steht. In beiden Patientengruppen besteht die Notwendigkeit der strengen Kontrolle der kardiovaskulären Risikofaktoren, inkl. der Blutdruck- und Diabeteseinstellung, Nikotinkarenz und Reduktion der Cholesterinwerte mittels intensiver Statintherapie, gemäß nationalen und internationalen Leitlinien. Die endovaskuläre Behandlung der pAVK wird breitflächig und von verschiedenen Fachdisziplinen eingesetzt. Herkömmliche endovaskuläre Therapieverfahren weisen jedoch bei komplexen und stark kalzifizierten Läsionen Limitationen auf, sodass z. B. die klassische Ballonangioplastie bei solchen Läsionen mit „Recoil“ (Zusammenziehen) und/oder schweren Dissektionen (Gefäßeinrisse bis hin zum Gefäßverschluss) assoziiert ist, die i. d. R. eine Stentimplantation erforderlich machen. Verfahren zur Läsionspräparation wie die Atherektomie und die intravaskuläre Lithotripsie (IVL) können die Compliance von verkalkten Arterien verbessern, indem entweder Mikrofrakturen an verkalkten Stellen verursacht werden oder kalzifiziertes Material entfernt wird. Auf diesem Weg kann anschließend eine Ballonangioplastie mit weniger Barotrauma erfolgen und die Notwendigkeit der Stentimplantation reduziert werden, während die nachfolgende Behandlung mit medikamentenbeschichteten Ballons (DCB) mit einer potenziell verbesserten Penetration des Medikamentes in die Gefäßwand einhergeht, sodass die Wirksamkeit der entsprechenden antirestenotischen Effekte erhöht werden kann. Im Folgenden werden Möglichkeiten und Grenzen der verschiedenen Läsionspräparationsverfahren und sowie die aktuelle Studienlage vorgestellt und diskutiert.
Abstract
Peripheral arterial disease (PAD) is mostly caused by stenotic atherosclerotic lesions of lower limb arteries. Intermittent claudication is the most common manifestation, while, in more advanced stages of the disease, chronic limb-threatening ischemia (CLTI) occurs. Optimal medical therapy is an essential cornerstone in all stages of PAD, while endovascular and open surgical revascularisation are of great importance – depending on the patient and lesion characteristics and can be used in a complementary manner. In patients with claudication, the improvement in the pain-free walking distance is the primary therapeutic goal, while, in patients with CLTI, amputation-free survival is most important. In both patient groups, there is a need for strict control of cardiovascular risk factors, including blood pressure and diabetes control, nicotine abstinence and reduction in cholesterol levels using intensive statin therapy, in accordance with national and international guidelines. Endovascular treatment of PAD is used widely and by various specialist disciplines. However, conventional endovascular therapy procedures have limitations in complex and heavily calcified lesions, so that, for example, classic balloon angioplasty in such lesions is associated with “recoil” and/or severe dissections, which usually require the placement of permanent metallic implants. Lesion preparation procedures, such as atherectomy and intravascular lithotripsy (IVL) can improve compliance of calcified arteries, by either creating microfractures at calcified sites or removing calcified material. In this way, balloon angioplasty can be performed with less barotrauma and the need for stent implantation can be reduced, while subsequent treatment with drug-coated balloons (DCB) is associated with potentially improved penetration of the drug into the vessel wall, and thus increases the effectiveness of the procedure by enhancing anti-restenotic effects. In this manuscript, the potential – but also the limitations – of different lesion preparation strategies are presented and discussed.
Schlüsselwörter
Angioplastie - endovaskuläre Therapie - Arteria femoralis superficialis - Spezialballonkatheter - chronischer Verschluss - LäsionspräparationKeywords
angioplasty - endovascular treatment - superficial femoral artery - specialty balloons - chronic total occlusion - lesion preparationPublication History
Received: 26 May 2024
Accepted: 06 February 2025
Article published online:
14 March 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Fakhry F, Spronk S, van der Laan L. et al. Endovascular Revascularization and Supervised Exercise for Peripheral Artery Disease and Intermittent Claudication: A Randomized Clinical Trial. JAMA 2015; 314: 1936-1944
- 2 Kreutzburg T, Peters F, Riess HC. et al. Editor’s Choice – Comorbidity Patterns Among Patients with Peripheral Arterial Occlusive Disease in Germany: A Trend Analysis of Health Insurance Claims Data. Eur J Vasc Endovasc Surg 2020; 59: 59-66
- 3 Behrendt CA, Sigvant B, Kuchenbecker J. et al. Editor’s Choice – International Variations and Sex Disparities in the Treatment of Peripheral Arterial Occlusive Disease: A Report from VASCUNET and the International Consortium of Vascular Registries. Eur J Vasc Endovasc Surg 2020; 60: 873-880
- 4 Betge S, Engelbertz C, Espinola-Klein C. et al. Analysis of endovascular therapy for peripheral arterial disease in all German hospitals. Vasa 2023; 52: 366-378
- 5 Aboyans V, Bjorck M, Brodmann M. et al. Questions and answers on diagnosis and management of patients with Peripheral Arterial Diseases: a companion document of the 2017 ESC Guidelines for the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Endorsed by: the European Stroke Organisation (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J 2018; 39: e35-e41
- 6 Böhme T, Zeller T. Interventionelle Therapie der peripheren arteriellen Verschlusskrankheit. Dtsch Med Wochenschr 2023; 148: 1301-1306
- 7 Mustapha JA, Diaz-Sandoval LJ, Jaff MR. et al. Ultrasound-Guided Arterial Access: Outcomes Among Patients With Peripheral Artery Disease and Critical Limb Ischemia Undergoing Peripheral Interventions. J Invasive Cardiol 2016; 28: 259-264
- 8 Eiberg JP, Gronvall Rasmussen JB, Hansen MA. et al. Duplex ultrasound scanning of peripheral arterial disease of the lower limb. Eur J Vasc Endovasc Surg 2010; 40: 507-512
- 9 Korosoglou G, Schmidt A, Lichtenberg M. et al. Crossing Algorithm for Infrainguinal Chronic Total Occlusions: An Interdisciplinary Expert Opinion Statement. JACC Cardiovasc Interv 2023; 16: 317-331
- 10 Korosoglou G, Schmidt A, Lichtenberg M. et al. Best crossing of peripheral chronic total occlusions. Vasa 2023; 52: 147-159
- 11 Korosoglou G, Schmidt A, Stavroulakis K. et al. Retrograde Access for the Recanalization of Lower-Limb Occlusive Lesions: A German Experience Report in 1,516 Consecutive Patients. JACC Cardiovasc Interv 2022; 15: 348-351
- 12 Korosoglou G, Blessing E, Grözinger G. et al. Endovascular therapy or surgery for chronic limb threatening ischemia?. Vasa 2023; 52: 214-217
- 13 Fanelli F, Cannavale A, Gazzetti M. et al. Calcium burden assessment and impact on drug-eluting balloons in peripheral arterial disease. Cardiovasc Intervent Radiol 2014; 37: 898-907
- 14 Dake MD, Ansel GM, Jaff MR. et al. Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery: 5-Year Results of the Zilver PTX Randomized Trial. Circulation 2016; 133: 1472-1483
- 15 Hong SJ, Ko YG, Shin DH. et al. Outcomes of spot stenting versus long stenting after intentional subintimal approach for long chronic total occlusions of the femoropopliteal artery. JACC Cardiovasc Interv 2015; 8: 472-480
- 16 Zorger N, Manke C, Lenhart M. et al. Peripheral arterial balloon angioplasty: effect of short versus long balloon inflation times on the morphologic results. J Vasc Interv Radiol 2002; 13: 355-359
- 17 Feldman DN, Armstrong EJ, Aronow HD. et al. SCAI consensus guidelines for device selection in femoral-popliteal arterial interventions. Catheter Cardiovasc Interv 2018; 92: 124-140
- 18 Blessing E, Lugenbiel I, Holden A. The evidence to support the use of focal force balloon technology to improve outcomes in the treatment of lower extremity arterial occlusive disease. J Cardiovasc Surg (Torino) 2019; 60: 14-20
- 19 Mustapha JA, Lansky A, Shishehbor M. et al. A prospective, multi-center study of the chocolate balloon in femoropopliteal peripheral artery disease: The Chocolate BAR registry. Catheter Cardiovasc Interv 2018; 91: 1144-1148
- 20 Shishehbor MH, Zeller T, Werner M. et al. Randomized Trial of Chocolate Touch Compared With Lutonix Drug-Coated Balloon in Femoropopliteal Lesions (Chocolate Touch Study). Circulation 2022; 145: 1645-1654
- 21 Holden A, Hill A, Walker A. et al. PRELUDE Prospective Study of the Serranator Device in the Treatment of Atherosclerotic Lesions in the Superficial Femoral and Popliteal Arteries. J Endovasc Ther 2019; 26: 18-25
- 22 Fereydooni A, Chandra V, Schneider PA. et al. Serration Angioplasty Is Associated With Less Recoil in Infrapopliteal Arteries Compared With Plain Balloon Angioplasty. J Endovasc Ther 2023;
- 23 Lugenbiel I, Grebner M, Zhou Q. et al. Treatment of femoropopliteal lesions with the AngioSculpt scoring balloon – results from the Heidelberg PANTHER registry. Vasa 2018; 47: 49-55
- 24 Kronlage M, Werner C, Dufner M. et al. Long-term outcome upon treatment of calcified lesions of the lower limb using scoring angioplasty balloon (AngioSculpt). Clin Res Cardiol 2020; 109: 1177-1185
- 25 Amighi J, Schillinger M, Dick P. et al. De novo superficial femoropopliteal artery lesions: peripheral cutting balloon angioplasty and restenosis rates--randomized controlled trial. Radiology 2008; 247: 267-272
- 26 Böhme T, Noory E, Beschorner U. et al. Combined treatment of dysfunctional dialysis access with cutting balloon and paclitaxel-coated balloon in real world. Vasa 2023; 52: 284-289
- 27 Dias-Neto M, Matschuck M, Bausback Y. et al. Endovascular Treatment of Severely Calcified Femoropopliteal Lesions Using the "Pave-and-Crack" Technique: Technical Description and 12-Month Results. J Endovasc Ther 2018; 25: 334-342
- 28 Giusca S, Schmidt A, Korosoglou G. ‘Pave-and-crack’ technique for the recanalization of severely calcified occlusive aorto-ilio-femoral disease in type-III Leriche syndrome: a case report. Eur Heart J Case Rep 2021; 5
- 29 Lichtenberg M, Korosoglou G. Atherectomy plus antirestenotic therapy for SFA lesions: evolving evidence for better patency rates in complex lesions. J Cardiovasc Surg (Torino) 2019; 60: 205-211
- 30 Schöfthaler C, Troisi N, Torsello G. et al. Safety and effectiveness of the phoenix atherectomy device for endovascular treatment of common femoral and popliteal arteries: Results of the EN-MOBILE trial. Vasc Med 2024; 29: 405-415
- 31 Giusca S, Hagstotz S, Lichtenberg M. et al. Phoenix atherectomy for patients with peripheral artery disease. EuroIntervention 2022; 18: e432-e442
- 32 Zeller T, Langhoff R, Rocha-Singh KJ. et al. Directional Atherectomy Followed by a Paclitaxel-Coated Balloon to Inhibit Restenosis and Maintain Vessel Patency: Twelve-Month Results of the DEFINITIVE AR Study. Circ Cardiovasc Interv 2017; 10
- 33 Babaev A, Halista M, Bakirova Z. et al. Directional versus orbital atherectomy of femoropopliteal artery lesions: Angiographic and intravascular ultrasound outcomes. Catheter Cardiovasc Interv 2022; 100: 687-695
- 34 Dattilo R, Himmelstein SI, Cuff RF. The COMPLIANCE 360° Trial: a randomized, prospective, multicenter, pilot study comparing acute and long-term results of orbital atherectomy to balloon angioplasty for calcified femoropopliteal disease. J Invasive Cardiol 2014; 26: 355-360
- 35 Dukic D, Martin K, Lichtenberg M. et al. Novel Therapeutic Concepts for Complex Femoropopliteal Lesions Using the Jetstream Atherectomy System. J Endovasc Ther 2024; 31: 1218-1226
- 36 Andrassy M, Lichtenberg M, Brodmann M. et al. Jetstream Rotational Atherectomy and Drug Coated Balloon Angioplasty with In Stent Re-stenosis and Occlusions. A Two Centre Study. Eur J Vasc Endovasc Surg 2022; 64: 733-734
- 37 Kronlage M, Erbel C, Lichtenberg M. et al. Safety, Effectiveness, and Midterm Results of Endovascular Treatment for the Common Femoral Artery: A Two Centre Atherectomy Trial. Eur J Vasc Endovasc Surg 2023; 66: 280-281
- 38 Teßarek J, Oberhuber A. [Innovations in the endovascular treatment of peripheral arterial disease]. Gefasschirurgie 2021; 26: 347-358
- 39 McKinsey JF, Zeller T, Rocha-Singh KJ. et al. Lower extremity revascularization using directional atherectomy: 12-month prospective results of the DEFINITIVE LE study. JACC Cardiovasc Interv 2014; 7: 923-933
- 40 Rocha-Singh KJ, Sachar R, DeRubertis BG. et al. Directional atherectomy before paclitaxel coated balloon angioplasty in complex femoropopliteal disease: The VIVA REALITY study. Catheter Cardiovasc Interv 2021; 98: 549-558
- 41 Giannopoulos S, Secemsky EA, Mustapha JA. et al. Three-Year Outcomes of Orbital Atherectomy for the Endovascular Treatment of Infrainguinal Claudication or Chronic Limb-Threatening Ischemia. J Endovasc Ther 2020; 27: 714-725
- 42 Freitas B, Steiner S, Bausback Y. et al. Rotarex Mechanical Debulking in Acute and Subacute Arterial Lesions. Angiology 2017; 68: 233-241
- 43 Rammos C, Manzke A, Lortz J. et al. Mechanical atherothrombectomy improves endothelial function through plaque burden reduction in PAD. Vasa 2022; 51: 377-385
- 44 Wardle BG, Ambler GK, Radwan RW. et al. Atherectomy for peripheral arterial disease. Cochrane Database Syst Rev 2020; 9
- 45 Wu Z, Huang Q, Pu H. et al. Atherectomy Combined with Balloon Angioplasty versus Balloon Angioplasty Alone for de Novo Femoropopliteal Arterial Diseases: A Systematic Review and Meta-analysis of Randomised Controlled Trials. Eur J Vasc Endovasc Surg 2021; 62: 65-73
- 46 Adams G, Shammas N, Mangalmurti S. et al. Intravascular Lithotripsy for Treatment of Calcified Lower Extremity Arterial Stenosis: Initial Analysis of the Disrupt PAD III Study. J Endovasc Ther 2020; 27: 473-480
- 47 Brodmann M, Werner M, Holden A. et al. Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: Results of Disrupt PAD II. Catheter Cardiovasc Interv 2019; 93: 335-342
- 48 Madhavan MV, Shahim B, Mena-Hurtado C. et al. Efficacy and safety of intravascular lithotripsy for the treatment of peripheral arterial disease: An individual patient-level pooled data analysis. Catheter Cardiovasc Interv 2020; 95: 959-968
- 49 Tepe G, Brodmann M, Werner M. et al. Intravascular Lithotripsy for Peripheral Artery Calcification: 30-Day Outcomes From the Randomized Disrupt PAD III Trial. JACC Cardiovasc Interv 2021; 14: 1352-1361
- 50 Tepe G, Brodmann M, Bachinsky W. et al. Intravascular Lithotripsy for Peripheral Artery Calcification: Mid-term Outcomes From the Randomized Disrupt PAD III Trial. J Soc Cardiovasc Angiogr Interv 2022; 1